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Cutoff dependence of scalar masses

Problem:

the mass of a scalar field in any 4D QFT depends on the cutoff scale

δm2 ∼ Λ2
UV

How can we get a light scalar and cancel the cutoff dependence?

cancellation between the bare mass and the cutoff term due to a fine tuning
(like in the SM Higgs sector)

cancellation between the scalar mass and the mass of the supersymmetric partner in a
SUSY theory

fine tuning the counterterms in the Lagrangian (naturalness problem)

Interesting scenarios open up when adding extra dimensions.
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Hiding extra dimensions

Models with extra dimensions have been used many times in elementary particle physics
and cosmology

Results rely on perturbation theory or string theory

Phenomenologically interesting for Gauge-Higgs unification, hierarchy problem,
dynamical EW symmetry breaking, etc...

Problem:

why don’t we see extra dimensions?

Dimensional reduction to 4D can happen through different mechanisms:

compactification (Kaluza-Klein)

localisation (brane scenario) [ADD,Randall-Sundrum,Dvali-Shifman,Fu-Nielsen,D-theory]
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Higher dimensional Effective Field Theories

Start with a theory in five dimensions

Consider a Yang–Mills theory in 5 dimensions

S = Tr

∫
d4x

∫
dx5 −

1

2
FMNF

MN

this 5D gauge theory is perturbatively non–renormalizable and is considered in the
framework of Effective Field Theories

an ultra–violet cutoff ΛUV must be kept in place for the theory to be well defined: it
determines the energy scale of our ignorance

-
5D YM

ΛUV

?

E
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Dimensional reduction and scalar particles

Compactify one dimension on S1 with radius R

a massless scalar field appears naturally in 4D from the compactified component of the
higher–dimensional gauge vector field

other massive particles (KK–modes) appear from this compactification at energies
E ∼ ΛR ≈ R−1

by integrating out degrees of freedom heavier than ΛR, the low energy effective action is

Seff ∼ 2πR Tr

∫
d4x −

1

2
F

(0)
µν F

(0)µν + (DµA
(0)
5 )2

therefore we have an effective 4D YM + massless adjoint scalar at E � ΛR ≈ R−1

-

4D YM + Adj scalar
ΛR

KK–modes 5D YM

ΛUV

?

E
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Light scalar from compactified extra dimensions

The resulting effective 4D action allows us to write a gauge–invariant mass term for the scalar

Seff ∼
∫

d4x −
1

2
Tr [FµνF

µν ] + Tr (DµA5)2 +m2
5Tr A2

5

The 1–loop correction to the zero bare mass can be calculated in perturbation theory using
different approaches:

in the 4D effective field theory by accounting for all the KK–modes in the sum [Cheng]

by writing an effective potential for a background field [Hosotani]

using an explicit realization of a 5D theory regularized at ΛUV � ΛR [Del Debbio]

The last calculation suggests that any regularization that preserves locality and gauge invariance
will give the same result, independent of the cutoff scale, as long as ΛUV � ΛR

δm2
5 =

9g2
4Nc

16π2R2
ζ(3)
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SU(2) Yang–Mills theory on the lattice

Motivations:

perturbation theory is not the whole story: can we still say that the scalar mass is
independent of the cutoff if the coupling constant is not small?

4D Yang–Mills theories develop a dynamical mass gap σ non–perturbatively

if m5 �
√
σ → decouples from the 4D physics

the lattice provides a gauge–invariant regularization that allows us to study a
non–renormalizable theory, by keeping the cutoff at all times

the model in the lattice regularization can be studied non–perturbatively using Monte
Carlo numerical simulations
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SU(2) Yang–Mills theory on the lattice

Toy Model:

Start from the continuum 5D SU(2) Yang–Mills Euclidean Action

S =

∫
d4x

∫ 2πR

0
dx5

1

2g2
5

Tr F 2
MN

and discretize it using an anisotropic Wilson Action

SW = β4

∑
x;1≤µ≤ν≤4

[
1−

1

2
ReTr Pµν(x)

]
+ β5

∑
x;1≤µ≤4

[
1−

1

2
ReTr Pµ5(x)

]

asymmetric lattice with dimensions N4
4 ×N5

periodic boundary conditions in all the 5 directions

two equivalent parametrization can be used

[Ejiri, de Forcrand, Farakos, Knechtli]
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Dictionary for the lattice model

Simulations are performed on asymmetric N4
4 ×N5 lattice with the Action

SW = β4

∑
x;1≤µ≤ν≤4

[
1−

1

2
ReTr Pµν(x)

]
+ β5

∑
x;1≤µ≤4

[
1−

1

2
ReTr Pµ5(x)

]

The model has 4 tunable parameters:

(β4, β5, N4, N5) or (β, γ,N4, N5)

The first 2 are the coupling constants and dynamically set the 2 lattice spacings:
a4 in the 4D subspace and a5 in the extra direction

γ is the bare anisotropy and, at tree level, corresponds to γ ∼ ξ = a4/a5

Restrict to γ ≥ 1 gives a4 ≥ a5 and ΛUV ∼ a−1
4

The spatial volume is V = (a4N4)3

The size of the extra dimension is L5 = 2πR = a5N5

and the compactification scale is ΛR ∼ 1/a5N5
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The phase diagram

Space of the couplings
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Isotropic model: γ = 1

Bulk transition on large symmetric lattices

[Knechtli, arxiv:1110.4210]
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Isotropic model: γ = 1

Transitions on lattices with a small extra dimension
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Phase diagram:γ > 1
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Bulk vs. thermal phase transition:γ > 1
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Low energy regime and scale separation

-
√
σ

m5

1
R

1
a4

E

separate the compactification scale from the cutoff scale ΛUV
ΛR
� 1

a5N5

a4
=

N5

ξ
∼

N5

γ
� 1

separate the 4D physics from the cutoff scale ΛUV ∼ 1
a4

a4
√
σ � 1 ; a4m5 � 1

separate the 4D physics from the compactification scale ΛR ∼ 1
a5N5

a4
√
σ
N5

ξ
� 1 ; a4m5

N5

ξ
� 1

find a scalar mass in 4D physical units which is independent of ΛUV

m2
5

σ
∝

1

R2
≈ Λ2

R
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Features of the lattice model

-

1

E
√
σ

Express the energy scales of the model in units of the low–energy 4D physics →
√
σ

(Also assume this scale does not depend on the parameters)

Assume no N4 dependence of the 4D physics (introduce systematic errors)

We have 3 distinct energy scales: m5, ΛR and ΛUV

We have 3 parameters that we can play with to change the 3 scales of the model

How does m5 depend on the other 2 scales?

We can do non–perturbative numerical simulations and measure m5 directly for different
values of ΛR and ΛUV

We can use one–loop relations between the lattice model and the continuum theory as a
guide for numerical simulations

E. Rinaldi (University of Edinburgh) SU(2) YM in (4 + 1)d 2012-06-06 16 / 22



Features of the lattice model

������� -

1

m5√
σ

1

R
√
σ

1

a4
√
σ

E
√
σ

Express the energy scales of the model in units of the low–energy 4D physics →
√
σ

(Also assume this scale does not depend on the parameters)

Assume no N4 dependence of the 4D physics (introduce systematic errors)

We have 3 distinct energy scales: m5, ΛR and ΛUV

We have 3 parameters that we can play with to change the 3 scales of the model

How does m5 depend on the other 2 scales?

We can do non–perturbative numerical simulations and measure m5 directly for different
values of ΛR and ΛUV

We can use one–loop relations between the lattice model and the continuum theory as a
guide for numerical simulations

E. Rinaldi (University of Edinburgh) SU(2) YM in (4 + 1)d 2012-06-06 16 / 22



Features of the lattice model

������� -

1

m5√
σ

1

R
√
σ

1

a4
√
σ

E
√
σ

(β4, β5, N5)

Express the energy scales of the model in units of the low–energy 4D physics →
√
σ

(Also assume this scale does not depend on the parameters)

Assume no N4 dependence of the 4D physics (introduce systematic errors)

We have 3 distinct energy scales: m5, ΛR and ΛUV

We have 3 parameters that we can play with to change the 3 scales of the model

How does m5 depend on the other 2 scales?

We can do non–perturbative numerical simulations and measure m5 directly for different
values of ΛR and ΛUV

We can use one–loop relations between the lattice model and the continuum theory as a
guide for numerical simulations

E. Rinaldi (University of Edinburgh) SU(2) YM in (4 + 1)d 2012-06-06 16 / 22



Features of the lattice model

������� -

1

m5√
σ

1

R
√
σ

1

a4
√
σ

E
√
σ

Express the energy scales of the model in units of the low–energy 4D physics →
√
σ

(Also assume this scale does not depend on the parameters)

Assume no N4 dependence of the 4D physics (introduce systematic errors)

We have 3 distinct energy scales: m5, ΛR and ΛUV

We have 3 parameters that we can play with to change the 3 scales of the model

How does m5 depend on the other 2 scales?

We can do non–perturbative numerical simulations and measure m5 directly for different
values of ΛR and ΛUV

We can use one–loop relations between the lattice model and the continuum theory as a
guide for numerical simulations

E. Rinaldi (University of Edinburgh) SU(2) YM in (4 + 1)d 2012-06-06 16 / 22



Strategy for lattice simulations
Fix a point in parameter space

( β4, β5, N5 )

Now 2 scales are fixed
ΛUV and ΛR

Measure 2 observables in units of the lattice spacing

a4
√
σ and a4m5

These give us the actual values for ΛUV and m5 in units of the string tension

We are not able to extract ΛR from a measurement but

ξ =
a4

a5
→ ΛR =

ξ

N5
ΛUV

(the relation ξ = f(γ, β) had already been mapped [Ejiri, hep-ph/0006217])

For each set of bare parameters we obtain a set of scales

( β4, β5, N5 ) → ( ΛUV, ΛR, m5 )

Study m5 as a function of ΛUV and ΛR
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Measuring masses

We use standard lattice spectroscopic techniques and we extract masses from Euclidean
2–point functions

We use gauge–invariant, zero–momentum lattice operators O(t) coupling to the states of
interest, that is with the same quantum numbers and symmetries of the states whose
mass we are interested in

We correlate the operators in the time direction (which is assumed to be one of the 4
directions with N4 lattice sites) and we average over the N5 slices in the extra dimension

We find the best linear combination of operators within a basis of operators with the same
quantum numbers, and extract the mass from fitting its correlator at large temporal
distances

Φ(t) =
∑
α

vαOα(t) ;
〈

Φ†(t)Φ(0)
〉

= |c0|2 cosh (m0t−Nt/2)

We define the relative projection of the extracted state onto each of the basis operators
Oα

projα =
|vα|2∑
i |vi|2
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Measuring masses
1 String tension from spatial Polyakov loops

O(t) =
∑
x,i

Li(x, t) ; Li(x, t) =

N4∏
j=1

Ui(x+ ja4 î, t)

2 Scalar mass from compact Polyakov loops

O1(t) =
∑
x

Tr [L5(x, t)] ; L5(x, t) =

N5∏
j=1

U5(x+ ja55̂, t)

O2(t) =
∑
x

Tr [φ(x, t)φ†(x, t)] ; φ(x, t) =
L5 − L†5

2

3 Glueball mass from spatial Wilson loops:

OG(t) =
∑
x

Tr
∏

l∈C(~x)

Ul

a) b) c)
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String tension at N5 = 6

Along trajectories with fixed β4
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String tension at N5 = 6
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Scalar spectrum at N5 = 4
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Scalar spectrum at N5 = 4

Relative projections projα of the ground state
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Scalar spectrum at N5 = 4

Relative projections projα of the 1st excitation
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Scalar mass dependence at N5 = 4 and N5 = 6
The simulated points fall in the following region of a4 and R
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Scalar mass dependence at N5 = 4 and N5 = 6
The scalar mass as a function of the lattice spacing
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Scalar mass dependence at N5 = 4 and N5 = 6

The scalar mass as a function of the compactification radius
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Scalar mass dependence at N5 = 4 and N5 = 6

Try to cancel out the dependence on the radius
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Conclusions

Summary:

Non–perturbative study of scalar mass corrections using an explicit regularization of a
non–renormalizable gauge theory

The parameter space of the model has a very rich structure and we found a region where
the desired separation of scales takes place

We are able to follow lines of constant physics and to study the dependence of the scalar
mass on the 2 energy scales of the system

The measured scalar mass is independent of the cutoff when the separation of scales takes
place and the data confirm the perturbative prediction

Mixing with scalar glueball states becomes non negligible as the theory approaches the
weak–coupling limit
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Conclusions

Still a work in progress:

The current understanding is a good starting point

Increase N4 to explore the region with smaller a4
√
σ (reduce finite size errors)

Increase N5 to explore the region with smaller R
√
σ (reduce finite size errors)

Find operators with better overlap on the adjoint scalar particle

Match the spectrum of 5D lattice gauge theory wiht the corresponding
dimensionally reduced 4D lattice theory coupled to a scalar field
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Kaluza-Klein reduction
Hide the extra dimension at low energies by making it small and compact

x5 → Rθ θ ∈ [−π, π]

The field–strength tensor can be written as

S = Tr

∫
d4x

∫
dx5 −

1

2
FµνF

µν − Fµ5F
µ5

The gauge field can be expanded in Fourier modes and the component A5(x, x5) can be
gauge–fixed to be θ–independent (almost axial gauge)

Aµ(x, θ) = A
(0)
µ (x) +

∞∑
n=1

[
A

(n)
µ (x)einθ +A

(n)?
µ (x)e−inθ

]
A5(x, θ) = A

(0)
5 (x)

Expanding the field–strength tensors keeping only quadratic terms gives

S = 2πR Tr

∫
d4x

{
−

1

2
(∂µA

(0)
ν − ∂νA

(0)
µ )2 +

1

2
(∂µA

(0)
5 )2

+
∞∑
n=1

[
−

1

2
|∂µA(n)

ν − ∂νA(n)
µ |2 +

n2

R2
|A(n)
µ |2

]}
Below the mass scale mKK = n/R the quadratic action is

Seff ∼ 2πR Tr

∫
d4x −

1

2
F

(0)
µν F

(0)µν + (DµA
(0)
5 )2
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Scale separation and the scalar mass

The effective coupling constant g4 ≡ g5√
2πR

is dimensionless

Determined by the naive running of the dimensionless ĝ2
5(E) = g2

5(E)E

At the compactification scale ΛR = R−1 we have

ĝ2
4 ≡ g2

4 = g2
5(ΛR)ΛR

ĝ2
4 = ĝ2

5(ΛUV)

(
ΛR

ΛUV

)
The scalar mass at 1–loop becomes

m2
5 =

9ĝ2
5Nc

16π2R2

(
ΛR

ΛUV

)
ζ(3)
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Running of the coupling constant

g2

m5
1
R

cutoff E
4

5
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Naive continuum limit

By matching the naive continuum limit (a4, a5 → 0) of the lattice action with the continuum
action we obtain:

1

(β4 , β5) →


β4 '

4a5

g2
5

β5 '
4a2

4

g2
5a5

2

(β , γ) →


β =

√
β4β5 '

4a4

g2
5

γ =

√
β5

β4
'

a4

a5

3

Ñ5 →
N5

γ
'

2πR

a4
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One–loop expressions for lattice observables

We can express lattice obervables like a2
4σ or m5√

σ
as functions of the lattice model’s parameters

β, γ and N5. This is only a rough guide to understand the behaviour of observables as the
parameters are changed.

A simple–minded approach consists in using the classical relation between the lattice and the
continuum, together with one–loop formulae for the string tension and for the scalar mass.
The results can be written as

a2
4σ ∼

γ2

N2
5

exp

{
−

βN5

2Ncb0γ

}

m5√
σ
∼

√
2Ncγ

βN5
exp

{
βN5

4Ncb0γ

}
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String tension and scalar mass in parameter space

Lines of constant a4
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String tension and scalar mass in parameter space
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String tension and scalar mass in parameter space

Lines of constant m5√
σ
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Monitoring phase transitions

The investigation of the phase structure in the lattice model requires monitoring the behaviour
of order parameters, such as the following gauge–invariant observables:

1 4D Plaquette

p4 =

∑
1≤µ<ν≤4

∑
x ReTr Pµν(x)

6NcN4
4N5

2 transverse Plaquette

p5 =

∑
1≤µ≤4

∑
x ReTr Pµ5(x)

4NcN4
4N5

3 compact Polyakov loop

l5 =

∑N4
4

x=1 Tr
∏N5
i=1 U5(x+ 5̂ia)

NcN4
4
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Anisotropic model:γ < 1

Bulk transition at small anisotropy (β4 = 2.5)

[Knechtli, arxiv:1110.4210]

E. Rinaldi (University of Edinburgh) SU(2) YM in (4 + 1)d 2012-06-06 9 / 13



Anisotropic model:γ < 1

Bulk transition line and minimal lengths

[Knechtli, arxiv:1110.4210]
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Renormalized anisotropy
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Simulations points
Simulations for N5 = 4
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Simulations points
Simulations for N5 = 6
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Explore parameter space at N5 = 4
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Explore parameter space at N5 = 4

Data for R
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Explore parameter space at N5 = 4

Data for m5√
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String tension at weak-coupling

β

[de Forcrand, arxiv:1003.4643]
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