Hadronic Interaction Models and Ultra-High Energy Cosmic Rays

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

KMI Symposium, Nagoya, Japan April the 4th 2012 **Models and EAS**

LHC Data

Preamble

From R. Ulrich (KIT)

Goal of Astroparticle Physics :

- Astronomy with high energy particles
- Why hadronic interactions matter for Astrophysics ?
 - May be a little at the source to escape acceleration :

 $charged \rightarrow neutral \rightarrow charged$

- A bit more during propagation
 - interaction with medium on the way to Earth can change mass distribution
- A lot for detection
 - Detection using Earth's atmosphere as calorimeter :

Mass and Energy of Cosmic Ray only if EAS well described !

Models and EAS

LHC Data

Preamble

Goal of Astroparticle Physics :

- Astronomy with high energy particles
- Why Astrophysics matter for hadronic interactions ?
 - If the source mechanism is well understood we could have a known beam at ultra-high energy (10¹⁰ GeV and more)
 - source detection + known magnetic field = limit on CR mass
 - reasonable minimum limits from CR abundance :
 - Iow = hydrogen (proton)
 - high = iron (A=56)

EAS measurements should be between proton and iron simulated showers !

KMI Symposium – April 2011

Outline

Introduction

- Basic concepts
- Hadronic Models in EAS
 - Needs
 - Constraints
- LHC data
 - Comparison with minimum bias data

Consequences

- LHC simulations
- EAS simulations

KMI Symposium – April 2011

T. Pierog, KIT - 4/52

Cosmic Ray Spectrum

- Origins of spectrum properties
 - mostly unknown
 - depend on primary CR mass

- Most of analysis based on EAS simulations
 - ➡ CORSIKA ➡ AIRES
- ➡ CONEX, ...

KMI Symposium – April 2011

Extensive Air Shower

From R. Ulrich (KIT)

 $\begin{array}{l} A + air \rightarrow \text{hadrons} \\ p + air \rightarrow \text{hadrons} \\ \pi + air \rightarrow \text{hadrons} \\ \text{intial } \gamma \text{ from } \pi^0 \text{ decay} \\ e^{\pm} \rightarrow e^{\pm} + \gamma \\ \gamma \rightarrow e^+ + e^- \end{array}$

main source of uncertainties

well known

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}/\bar{\nu_{\mu}}$$

Cascade of particle in Earth's atmosphere

Number of particles at maximum

- ✤ 99,88% of electromagnetic (e/m) particles
- 0.1% of muons
- 0.02% hadrons

Energy

from 100% hadronic to 90% in e/m + 10% in muons at ground (vertical)

Extensive Air Shower Observables

Lateral distribution function (LDF)

- particle density at ground vs distance to the impact point (core)
- can be muons or electrons/gammas or a mixture of all.

midrapidity

n=0

 $\theta = 90^{\circ}$

 $\theta = 45^{\circ}$

forward

Some more definitions

Pseudorapidity

 emission angle of a particle from interaction point ("midrapidity" : η=0) :

$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right] \qquad \eta = \frac{1}{2}\ln\left(\frac{|\mathbf{p}| + p_{\rm L}}{|\mathbf{p}| - p_{\rm L}}\right)$$

when the mass of the particle is known the rapidity is used :

n=0.88

.θ=10°→η=2.44 −θ=0°→η=∞ fo

$$y = \frac{1}{2} \ln \left(\frac{E + p_{\rm L}}{E - p_{\rm L}} \right)$$

 for EAS development, "forward" particles (with large η) are most important

Transverse momentum

$$p_t = \sqrt{p_x^2 + p_y^2}$$

Multiplicity

- number of particles in a given η and p_t range

Models for Air Shower Simulation

Thickness = amount of energy

Hadronic models for simulations :

- mainly soft (low p_t (< 2 GeV/c)) physics + diffraction (forward region)
- should handle p-, π-Air, K-Air and A-Air interactions
- should be able to run at 10⁶ GeV center-ofmass (cms) energy
- Single set of parameters
- models used for EAS analysis :
 - QGSJET01/II
 - SIBYLL 2.1
 - EPOS 1.99

Hadronic Interaction Models

Theoretical basis :

- → pQCD (large p_t)
- Gribov-Regge (cross section with multiple scattering)
- energy conservation
- Phenomenology (models) :
 - string fragmentation
 - 🔶 beam remnants
 - diffraction (Good-Walker, ...)
 - higher order effects
- Comparison with data to fix parameters :
 - minimum theory requirement with few parameters and limited data set (QGSJET approach) : better predictive power

... or ...

more detailed data with more parameters (EPOS approach) : nothing neglected

What is the minimum to describe EAS correctly ?

KMI Symposium – April 2011

Pb : CR physic dominated by soft interactions

Pb : Gribov-Regge do not take into account energy conservation ...

Need Parameters !

Introduction

Models and EAS

Using generalized Heitler model and superposition model :

J. Matthews, Astropart.Phys. 22 (2005) 387-397

$$X_{max} \sim \lambda_e \ln \left((1-k) \cdot E_0 / (2 \cdot N_{tot} \cdot A) \right) + \lambda_{ine}$$

- Model independent parameters :
 - \bullet E₀ = primary energy
 - A = primary mass
 - λ_{a} = electromagnetic mean free path
- Model dependent parameters :
 - k = elasticity
 - N_{tot} = total multiplicity
 - λ_{ine} = hadronic mean free path (cross section)

Cross Section and Multiplicity in Models

Gribov-Regge and optical theorem

- Basis of all models (multiple scattering) but
 - Classical approach for QGSJET and SIBYLL (no energy conservation for cross section calculation)
 - Parton based Gribov-Regge theory for EPOS (energy conservation at amplitude level)

pQCD

QGSJET II

>=1

- Minijets with cutoff in SIBYLL
- Same hard Pomeron (DGLAP convoluted with soft part : not cutoff) in QGS and EPOS but
 - No enhanced diagram in Q01
 - Generalized enhanced diagram in QII
 - Simplified non linear effect in EPOS
 - Phenomenological approach

partons

Cross Section

- Same cross section at pp level and low energy (data)
- extrapolation to pA or to high energy
 - different amplitude and scheme : different extrapolations
- multiple scattering + screening needed to use pQCD hard amplitude in inelastic cross section calculation (σ_{hard}>σ_{ine})

Pseudorapidity and p_T

Models and EAS

LHC Data

Multiplicity

KMI Symposium – April 2011

T. Pierog, KIT - 15/52

Beam Remnants

Forward particle production dominated by beam remnants

- Each model has its own approach
- Can be tested at low energy

Rapidity y

Forward Spectra

Forward particles mainly from projectile remnant

SPS high ~17 GeV

dn/dy remnant

The (in)elasticity is closely related to diffraction and forward spectra

- At very low energy only particles from remnants
- At low energy (fixed target experiments) (SPS) strong mixing
- At intermediate energy (RHIC) mainly string contribution at mid-rapidity with tail of remnants.
- At high energy (LHC) only strings at mid-rapidity (baryon free)

Different contributions of particle production at different energies or rapidities

Diffraction and x_F Distributions

KMI Symposium – April 2011

T. Pierog, KIT - 18/52

Ultra-High Energy Hadronic Model Predictions

<Xmax>

Large spread of model predictions = large uncertainties on CR mass But no contradiction with data ...

KMI Symposium – April 2011

T. Pierog, KIT - 20/52

Introduction

Models and EAS

EPOS and SIBYLL

(almost) consistent with light mix to heavy mix <X_{max}> and RMS

QGSJETII

<X_{max}> and RMS not really consistent at high E (because of <X_{max}> only)

QGSJET01

 \rightarrow inconsistent description of $\langle X_{max} \rangle$ and RMS (because of $\langle X_{max} \rangle$ and RMS)

Hybrid Measurements

T. Pierog, KIT - 22/52

Muon Deficit in EAS Simulations

No hadronic model predicts as many muons as observed in EAS

- up to a factor of 2 at large angle
- no clear solution
 - more baryons
 - flatter LDF (muons@1000m in Auger) : larger p_t for forward pions

More Tests with EAS

EPOS 1.6 (2006) and KASCADE data

- ➡ Large muon number :
 - proton flux to high: not enough electron at ground
- not enough energy per hadron

Showers develop to fast using EPOS 1.6 more screening in nuclear cross-section

KMI Symposium – April 2011

KASCADE Hadron Correlation

Jörg R. Hörandel, RU Nijmegen Jens Milke, IWR, FZK

•EPOS 1.6 is not compatible with KASCADE measurements → can not be recommended for air shower simulations

•QGSJET-II has some deficiencies
→ should be used for simulations with care

•QGSJET 01 and SIBYLL 2.1 still most compatible models

EPOS 1.99

- these data used to understand problem with cross section and inelasticity
- extrapolation constrained by EAS data

Uncertainties in Model Extrapolation

- Hadronic models used for EAS simulations :
 - good agreement with pre-LHC data
 - large discrepancies were model are extrapolated (kinematic range and/or energy and mass)
 - compatible with most of CR data (within proton/iron limit) but no consistent description
 - muons not reproduced at high energy

Can the large uncertainties be reduced by the LHC ?

Plots by R. Ulrich (KIT)

LHC Detectors

Pseudorapidity Distributions

No model with perfect prediction : but data well bracketed

Predictions ! ... newest model released in march 2009

KMI Symposium – April 2011

T. Pierog, KIT - 28/52

Multiplicity Distributions

KMI Symposium – April 2011

T. Pierog, KIT - 29/52

Pseudorapidity Distributions

No model with perfect prediction : but better than HEP MC

Pt @ LHC

KMI Symposium – April 2011

T. Pierog, KIT - 31/52

Identified Particles @ LHC

KMI Symposium – April 2011

T. Pierog, KIT - 32/52

Identified Particles @ LHC

New results from CMS (last week) :

KMI Symposium – April 2011

T. Pierog, KIT - 33/52

CMS Forward Spectra

Forward Spectra

Fitting of LHCf data \rightarrow effect on air shower development under investigation

Rapidity Gap

ATLAS Collaboration

Rapidity gap closely related to diffraction

- diffractive cross-section
- AND diffractive mass distribution
- Hard constraint for CR
 - change elasticity

Comparison to LHC data

Globaly hadronic models for CR reproduce LHC data

- Data bracketed by models : even imprecise the extrapolations are not wrong
 - exclude explanations of the knee in the CR spectrum due to a change in hadronic physics : change at the CR source
- room for improvement with really nice and new data
 - cross section well measured at LHC
 - multiplicity distributions for various kinematic ranges
 - access to forward spectra and diffraction and energy 2 orders of magnitude higher than before

Can LHC data be fully described by CR models after retuning ?

Try with latest model QGSJETII and EPOS

Consequences on Astro and Particles

QGSJETII-04

from S. Ostapchenko

KMI Symposium – April 2011

Consequences on Astro and Particles

QGSJETII-04

After retuning some parameters and with loop diagrams, very good description of main LHC data for CR

from S. Ostapchenko

Models and EAS

LHC Data

Consequences on Astro and Particles

QGSJETII-04

Consequences on EAS $X_{max} (g/cm^2)$ p-induced EAS development 850 deeper showers 800 slightly more muons (less) than 10% increase) 750 SIBYLL-2.1 **QGSJET-II-03 Consequences for LHC** 700 QGSJET-II-04 difficult to use because of the limited type of particles 18 19 10 10 correlation p_t vs N_{ch} ? $E_0 (eV)$

from S. Ostapchenko

EPOS LHC

Small change needed

- tune cross section to TOTEM value
- change old flow calculation to a more realistic one

keep compatibility with lower energies

EPOS LHC

- Detailed description can be achieved
 - multiplicities (ATLAS and ALICE)
 - → p_t distributions

EPOS LHC

- Detailed description can be achieved
 - better than HEP MC used by LHC collaborations
 - can be used as min bias generator at LHC

not suitable for rare events (high pt jets or electroweak)

LHC Data

EAS with Re-tuned CR Models

- Cross section and multiplicity fixed at 7 TeV
 - smaller <X_{max}> for EPOS and larger for QGSJETII
 - re-tuned model converge to old Sibyll 2.1 predictions
 - reduced uncertainty from ~50 g/cm² to ~20 g/cm²
 (difference proton/iron is about 100 g/cm²)

Application to Astrophysics

Reduced uncertainty allows a better mass measurement

- 🔶 global fit
- constraint on source mass distribution and spectrum

Allard et al. [arXiv:1111.3290] with EPOS 1.99

Mass Measurement : Muon Number

From Heitler

$$N_{\mu} = \left| \frac{E_0}{E_{dec}} \right|^{\alpha}, \quad \alpha = \frac{\ln N_{\pi^{ch}}}{\ln \left(N_{\pi^{ch}} + N_{\pi^0} \right)}$$

In real shower, not only pions : Kaons and (anti)Baryons (but 10 times less ...)

- \rightarrow Baryons do not produce leading π^0
- With leading baryon, energy kept in hadronic channel = muon production
- Cumulative effect for low energy muons
- High energy muons
 - important effect of first interactions
 and baryon spectrum (LHC energy range)

Muon number depends on the number of (anti)B in p- or π -Air interactions at all energies

More fast (anti)baryons = more muons

T. Pierog et al., Phys. Rev. Lett. 101 (2008) 171101

KMI Symposium – April 2011

T. Pierog, KIT - 46/52

EPOS LHC

- Detailed description can be achieved
 - identified spectra
 - p_t behavior driven by collective effects (statistical hadronization + flow)

LHC Data

Consequences on Astro and Particles

Number of Muons and LHC

Discrepancy (baryon and pion spectra) between models

Large differences in the number of muons Reduced a lot by LHC data !

Models and EAS

LHC Data

Consequences on Astro and Particles

Number of Muons and LHC

Discrepancy (baryon and pion spectra) between models

Large differences in the number of muons Reduced a lot by LHC data !

Models and EAS

LHC Data

Consequences on Astro and Particles

Number of Muons and LHC

Discrepancy (baryon and pion spectra) between models

Large differences in the number of muons Reduced a lot by LHC data !

LHCf for neutrons

- Very forward measurement at LHCf
 - very different predictions from models
 - important for inelasticity and shower development
 - one possible origin of the muon puzzle

Summary

- Hadronic interaction models for CR reproduce LHC data in a reasonable way
 - ➡ No change of hadronic physics around the knee (10¹⁵ eV)
 - Large uncertainties in <X_{max}> simulations due to hadronic models reduced by precise fit of LHC data to the value of the exp. resolution
 - Muon puzzle needs forward baryon and p_t measurements :
 - NA61 will help here.
 - LHC energies important for high energy muons :

need more baryon measurements (forward)

Depending on the result, other mechanism may be needed ... or not !

Hadronic interaction models for CR <u>can</u> be re-tuned to LHC data without too many changes

- Better predictive power than HEP MC models
- EPOS LHC precise enough to be used for min. bias analysis
- All CR models available with hepMC interface !
 - CRMC interface already in GENSER

Models and EAS

LHC Data

Consequences on Astro and Particles

History of Models

LHC data : ALICE

• Published data (0.9, 2.36 and 7 TeV) :

- Charged particles = charged hadrons and charged leptons (~1.5%)
- Various triggers (Inelastic, NSD@900GeV, NSD@2.36TeV, Inel>0)
- Particle density of charged particles at η =0 vs energy
- Pseudorapidity (η) distributions of charged particles
- Multiplicity distributions of identified charged particles

NSD = Non Single Diffractive = proj & targ destroyed

⁻. Pierog, KIT - 54/52

inner

tracker

solenoid

muon detectors magnet voke

HF

EM and HAD calorimeters

LHC data : CMS

Published data (7 TeV 2011) :

- Pseudorapidity (η) distributions of charged particles
- Transverse momentum distributions of charged particles
- Forward calorimetric measurements
- Inelastic cross section

LHC data : ATLAS

Published data (7 TeV 2011) :

- Pseudorapidity (η) distributions of charged particles
- Multiplicity distributions of charged particles
- Transverse momentum distributions of charged particles
- inelastic cross section

FD and SD mismatch

AUGER

- Comparison event-by-event
 - Fix simulated FD profile with data
 - Compare measured SD signal with simulated one

SD systematically lower in simulation : ~25 % shift in energy scale + ~50 % deficit in muon number (for QGSJETII-03)

TA C

- Spectrum reconstruction
 - Spectrum using QGSJETII-03 for energy reconstruction
 - Renormalize energy using event seen by FD and SD using FD energy as reference

27 % shift in energy scale needed

FD and SD mismatch

AUGER

- Comparison event-by-event
 - Fix simulated FD profile with data
 - Compare measured SD signal with simulated one

SD systematically lower in simulation : ~25 % shift in energy scale + ~50 % deficit in muon number (for QGSJETII-03)

AT (

- Spectrum reconstruction
 - Spectrum using QGSJETII-03 for energy reconstruction
 - Renormalize energy using event seen by FD and SD using FD energy as reference

27 % shift in energy scale needed

Xmax Fluctuations

Forward Neutron Distributions

Analysis by A. Bunyatian

T. Pierog, KIT - 60/52

Average value used

- Small error due to models (~1-2%)
- Main uncertainty from unknown mass (~5-2%)

From Heitler model

$$E_{em} = \left[1 - \left(\frac{N_{em}}{N_{tot}}\right)^{n(A)}\right] E_0$$

- Energy deposit depends on muon number
 - Primary mass dependent

Consequences on Astro and Particles

Models and EAS **Toy Model for Electromagnetic Cascade**(skip)

n=3

Primary particle : photon/electron

Heitler toy model :

➡ 2 particles produced with equal energy

2ⁿ particles after $n = X/\lambda_{e}$ *n* interactions $N(X) = 2^n = 2^{X/\lambda_e}$ $E(X) = E_o/2^{X/\lambda_e}$

sumption: shower maximum reached if
$$E(X) = E_c$$
 (critical energy)

 λ_e ,

$$N_{max} = E_0 / E_c \qquad X_{max} \sim \lambda_e \ln(E_0 / E_c)$$

Toy Model for Hadronic Cascade

Primary particle : hadron

Using a simple generalized Heitler model to understand EAS characteristics :

- fixed interaction length
- equally shared energy
- 2 types of particles :
 - N_{had} continuing hadronic cascade until decay at E_{dec} producing muons (charged pions).
 - N_{em} transferring their energy to electromagnetic shower (neutral pions).

Models and EAS

LHC Data

Energy Transfer : Energy Deposit

Cross Section Calculation : SIBYLL / QGSJET

Interaction amplitude given by parameterization (soft) or pQCD (hard) and Gribov-Regge for multiple scattering :

- $\rightarrow \chi(s,b)$ parameters for a given model fixed by pp cross-section
- pp to pA or AA cross section from Glauber
- energy conservation not taken into account at this level

Cross Section Calculation : EPOS

Different approach in EPOS :

- Gribov-Regge but with energy sharing at parton level : MPI with energy conservation !
- amplitude parameters fixed from QCD and pp cross section
- cross section calculation take into account interference term

$$\Phi_{\rm pp}\left(x^+, x^-, s, b\right) = \sum_{l=0}^{\infty} \int dx_1^+ dx_1^- \dots dx_l^+ dx_l^- \left\{ \frac{1}{l!} \prod_{\lambda=1}^l -G(x_\lambda^+, x_\lambda^-, s, b) \right\}$$

$$\times F_{\rm proj}\left(x^+ - \sum x_\lambda^+\right) F_{\rm targ}\left(x^- - \sum x_\lambda^-\right).$$

$\sigma_{\rm ine}(s) = \int d^2b \left(1 - \Phi_{\rm pp}(1, 1, s, b)\right) \rightarrow {\rm can not use complex diagram like QII}$ with energy sharing

non linear effects taken into account as correction of single amplitude G

Particle Production in SIBYLL and QGSJET

Number n of exchanged elementary interaction per event fixed from elastic amplitude (cross section) :

→ n from :

$$P(n) = \frac{(2\chi)^n}{n!} \cdot \exp(-2\chi)$$

- no energy sharing accounted for (interference term)
- → 2n strings formed from the n elementary interactions
 - in QGSJET II, n is increased by the sub-diagrams
 - energy conservation : energy shared between the 2n strings
 - particles from string fragmentation
- inconsistency : energy sharing should be taken into account when fixing n
 - EPOS approach

Particle Production in EPOS

m number of exchanged elementary interaction per event fixed from elastic amplitude taking into account energy sharing :

 \rightarrow m from :

$$\Omega_{AB}^{(s,b)}(m,X^+,X^-) = \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+,x_{k,\mu}^-,s,b_k) \right\} \Phi_{AB} \left(x^{\text{proj}},x^{\text{targ}},s,b \right)$$

m and X fixed together by a complex Metropolis (Markov Chain)

→ 2m strings formed from the m elementary interactions

- energy conservation : energy fraction of the 2m strings given by X
- consistent scheme : energy sharing reduce the probability to have large m
- modified hadronization due to high density effect
 - statistical hadronization instead of string fragmentation

Iarger Pt (flow)

Remnants in SIBYLL

In SIBYLL : valence quarks attached to main string

- Iimited quark exchange
- very hard baryon and meson spectra
- string fragmentation
 - forward particle can be anything

Π

Remnants in QGSJET

In QGSJET : One quark exchange and leading remnant

Remnants in EPOS

In EPOS : any possible quark/diquark transfer

- Diquark transfer between string ends and remnants
- Baryon number can be removed from nucleon remnant :
 - Baryon stopping
- Baryon number can be added to pion/kaon remnant :
 - Baryon acceleration

Baryons and Remnants

Parton ladder string ends :

Problem of multi-strange baryons at low energy (Bleicher et al., Phys.Rev.Lett.88:202501,2002)

- 2 strings approach :
- $\Rightarrow \Omega / \Omega$ always > 1
- But data < 1 (Na49)</p>
- EPOS

- No "first string" with valence quarks : \overline{a} II strings equivalent
- Wide range of excited remnants (from light resonances to heavy quark-bag)
- $\Rightarrow \Omega / \Omega$ always < 1 _

Models and EAS

LHC Data

Muon Number

From Heitler

$$N_{\mu} = \left(\frac{E_0}{E_{dec}}\right)^{\alpha}, \quad \alpha = \frac{\ln N_{\pi^{ch}}}{\ln \left(N_{\pi^{ch}} + N_{\pi^0}\right)}$$

➡ In real shower, not only pions : Kaons and (anti)Baryons (but 10 times less ...)

$$\alpha = \frac{\ln(N_{had})}{\ln(N_{tot})} = 1 + \frac{\ln(R)}{\ln(N_{tot})}$$
$$R = \frac{N_{had}}{N_{tot}} \approx \frac{N_{\pi^{ch}} + N_B}{N_{\pi^{ch}} + N_B + N_{\pi^0}}$$
$$\frac{\text{Very important}}{\log N_{\pi^{ch}} + N_B + N_{\pi^0}}$$

in (a)Baryon-Air interactions, no leading neutral pion ! R~1

R depends on the number of (anti)B in p- or π -Air interactions

More fast (anti)baryons = $\alpha \rightarrow 1$ = more muons

T. Pierog et al., Phys. Rev. Lett. 101 (2008) 171101

T. Pierog, KIT - 73/52

LHC Data

Baryon Forward Spectra

- Large differences between models
- Need a new remnant approach for a complete description (EPOS)
- Problems even at low energy
- No measurement at high energy !

LHC Data

Total Number of Muons

Discrepancy (baryon and pion spectra) between models

Large differences in the number of muons

