Indication of electron neutrino appearance in the T2K experiment

Yoshihisa OBAYASHI for the T2K collaboration July 20th, 2011

Kamioka Observatory, Institute for Cosmic Ray Research, Univ. of Tokyo

2

Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam

K. Abe,⁴⁹ N. Abgrall,¹⁶ Y. Ajima,^{18,†} H. Aihara,⁴⁸ J. B. Albert,¹³ C. Andreopoulos,⁴⁷ B. Andrieu,³⁷ S. Aoki,²⁷ O. Araoka,^{18,†} J. Argyriades,¹⁶ A. Ariga,³ T. Ariga,³ S. Assylbekov,¹¹ D. Autiero,³² A. Badertscher,¹⁵ M. Barbi,⁴⁰ G. J. Barker,⁵⁶ G. Barr,³⁶ M. Bass,¹¹ F. Bay,³ S. Bentham,²⁹ V. Berardi,²² B. E. Berger,¹¹ I. Bertram,²⁹ M. Besnier,¹⁴ J. Beucher,⁸ D. Beznosko,³⁴ S. Bhadra,⁵⁹ F. d.M. M. Blaszczyk,⁸ A. Blondel,¹⁶ C. Bojechko,⁵³ J. Bouchez,^{8,*} S. B. Boyd,⁵⁶ A. Bravar,¹⁶ C. Bronner,¹⁴ D. G. Brook-Roberge,⁵ N. Buchanan,¹¹ H. Budd,⁴¹ D. Calvet,⁸ S. L. Cartwright,⁴⁴ A. Carver,⁵⁶ R. Castillo,¹⁹ M. G. Catanesi,²² A. Cazes,³² A. Cervera,²⁰ C. Chavez,³⁰ S. Choi,⁴³ G. Christodoulou,³⁰ J. Coleman,³⁰ W. Coleman,³¹ G. Collazuol,²⁴ K. Connolly,⁵⁷ A. Curioni,¹⁵ A. Dabrowska,¹⁷ I. Danko,³⁸ R. Das,¹¹ G. S. Davies,²⁹ S. Davis,⁵⁷ M. Day,⁴¹ G. De Rosa,²³ J. P. A. M. de André,¹⁴ P. de Perio,⁵¹ A. Delbart,⁸ C. Densham,⁴⁷ F. Di Lodovico,³⁹ S. Di Luise,¹⁵ P. Dinh Tran,¹⁴ J. Dobson,²¹ U. Dore,²⁵ O. Drapier,¹⁴ F. Dufour,¹⁶ J. Dumarchez,³⁷ S. Dytman,³⁸ M. Dziewiecki,⁵⁵ M. Dziomba,⁵⁷ S. Emery,⁸ A. Ereditato,³ L. Escudero,²⁰ L. S. Esposito,¹⁵ M. Fechner,^{13,8} A. Ferrero,¹⁶ A. J. Finch,²⁹ E. Frank,³ Y. Fujii,^{18,†} Y. Fukuda,³³ V. Galymov,⁵⁹ F. C. Gannaway,³⁹ A. Gaudin,⁵³ A. Gendotti,¹⁵ M. A. George,³⁹ S. Giffin,⁴⁰ C. Giganti,¹⁹ K. Gilje,³⁴ T. Golan,⁵⁸ M. Goldhaber,^{6,*} J. J. Gomez-Cadenas,²⁰ M. Gonin,¹⁴ N. Grant,²⁹ A. Grant,⁴⁶ P. Gumplinger,⁵² P. Guzowski,²¹ A. Haesler,¹⁶ M. D. Haigh,³⁶ K. Hamano,⁵² C. Hansen,^{20,‡} D. Hansen,³⁸ T. Hara,²⁷ P. F. Harrison,⁵⁶ B. Hartfiel,³¹ M. Hartz,^{59,51} T. Haruyama,^{18,†} T. Hasegawa,^{18,†} N. C. Hastings,⁴⁰ S. Hastings,⁵ A. Hatzikoutelis,²⁹ K. Hayashi,^{18,†} Y. Hayato,⁴⁹ C. Hearty,^{5,§} R. L. Helmer,⁵² R. Henderson,⁵² N. Higashi,^{18,†} J. Hignight,³⁴ E. Hirose,^{18,†} J. Holeczek,⁴⁵ S. Horikawa,¹⁵ A. Hyndman,³⁹ A. K. Ichikawa,²⁸ K. Ieki,²⁸ M. Ieva,¹⁹ M. Iida,^{18,†} M. Ikeda,²⁸ J. Ilic,⁴⁷ J. Imber,³⁴ T. Ishida,^{18,†} C. Ishihara,⁵⁰ T. Ishii,^{18,†} S. J. Ives,²¹ M. Iwasaki,⁴⁸ K. Iyogi,⁴⁹ A. Izmaylov,²⁶ B. Jamieson,⁵ R. A. Johnson,¹⁰ K. K. Joo,⁹ G. V. Jover-Manas,¹⁹ C. K. Jung,³⁴ H. Kaji,⁵⁰ T. Kajita,⁵⁰ H. Kakuno,⁴⁸ J. Kameda,⁴⁹ K. Kaneyuki,^{50,*} D. Karlen,^{53,52} K. Kasami,^{18,†} I. Kato,⁵² E. Kearns,⁴ M. Khabibullin,²⁶ F. Khanam,¹¹ A. Khotjantsev,²⁶ D. Kielczewska,⁵⁴ T. Kikawa,²⁸ J. Kim,⁵ J. Y. Kim,⁹ S. B. Kim,⁴³ N. Kimura,^{18,†} B. Kirby,⁵ J. Kisiel,⁴⁵ P. Kitching,¹ T. Kobayashi,^{18,†} G. Kogan,²¹ S. Koike,^{18,†} A. Konaka,⁵² L. L. Kormos,²⁹ A. Korzenev,¹⁶ K. Koseki,^{18,†} Y. Koshio,⁴⁹ Y. Kouzuma,⁴⁹ K. Kowalik,² V. Kravtsov,¹¹ I. Kreslo,³ W. Kropp,⁷ H. Kubo,²⁸ Y. Kudenko,²⁶ N. Kulkarni,³¹ R. Kurjata,⁵⁵ T. Kutter,³¹ J. Lagoda,² K. Laihem,⁴² M. Laveder,²⁴ K. P. Lee,⁵⁰ P. T. Le,³⁴ J. M. Levy,³⁷ C. Licciardi,⁴⁰ I. T. Lim,⁹ T. Lindner,⁵ R. P. Litchfield,^{56,28} M. Litos,⁴ A. Longhin,⁸ G. D. Lopez,³⁴ P. F. Loverre,²⁵ L. Ludovici,²⁵ T. Lux,¹⁹ M. Macaire,⁸ K. Mahn,⁵² Y. Makida,^{18,†} M. Malek,²¹ S. Manly,⁴¹ A. Marchionni,¹⁵ 40 2011年7月20日水曜日

Neutrino Oscillation

Flavor Eigenstate $(V_e, V_\mu, V_\tau) \neq Mass$ Eigenstate (V_1, V_2, V_3)

$$\begin{pmatrix} v_{\alpha} \\ v_{\beta} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{i} \\ v_{j} \end{pmatrix} \qquad \begin{array}{c} \alpha, \beta = \text{Flavor states} \\ i, j = \text{Mass states} \end{array}$$

Probability that V_{α} observed as V_{β} after traveling L: $P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2}(2\theta) \sin^{2}(\frac{1.27\Delta m^{2}(eV^{2})L(km)}{E_{\nu}(GeV)})$

 $\Delta m^2 = |m_i^2 - m_j^2|$

Three Flavour Oscillation

$$\begin{pmatrix} \boldsymbol{\nu}_{e} \\ \boldsymbol{\nu}_{\mu} \\ \boldsymbol{\nu}_{\tau} \end{pmatrix} = \boldsymbol{U}_{PMNS} \begin{pmatrix} \boldsymbol{\nu}_{1} \\ \boldsymbol{\nu}_{2} \\ \boldsymbol{\nu}_{3} \end{pmatrix}$$

U_{PMNS}=

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{vmatrix} \begin{vmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{vmatrix} \begin{vmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Oscillation between three neutrino flavors are represented by three mixing angle $(\theta_{12}, \theta_{23}, \theta_{13})$, two mass differences $(\Delta m^2_{12}, \Delta m^2_{23})$ and CP phase δ .

Current Status of Experimental Knowledge

 $\theta_{12} = 34^{\circ} \pm 3^{\circ}$ $\Delta m_{12}^2 \sim 8 \times 10^{-5} eV^2$ solar V, reactor V

$$\begin{split} \theta_{23} &= 45^\circ \pm 5^\circ \\ \Delta m_{23}{}^2 \sim 2.5 \times 10^{-3} eV^2 \\ \text{atmospheric V, accelerator V} \end{split}$$

 $\theta_{13} < 11^{\circ}$ reactor V, accelerator V

Last Unknown mixing angle θ₁₃ sin²(2θ₁₃)<0.15 @90%CL by CHOOZ, MINOS

Mass Hierarchy (m₃ >? <? m₁,m₂), CP phase δ: UNKNOWN.

Physics Motivation of v_e appearance

 \star discovery of $v_{\mu} \rightarrow v_{e}$

Direct detection of neutrino flavor mixing in "appearance" mode then Determine 013

 $P(v_{\mu} \rightarrow v_{e}) = \frac{\sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(1.27\Delta m_{31}^{2} L/E) + ...}{(\Delta m_{23}^{2} \sim \Delta m_{31}^{2})}$

Cf: In Reactor experiment, $P(v_e \rightarrow v_x) = sin^2 2\theta_{13} sin^2 (1.27 \Delta m_{31}^2 L/E) + ...$

Open a possibility to measure CP violation in lepton sector in future

CP odd term in $P(v_{\mu} \rightarrow v_{e}) \propto Sin\theta_{12}Sin\theta_{13}Sin\theta_{23}Sin\delta$

T2K (Tokai-to-Kamioka) experiment

T2K Main Goals:

\star Discovery of $v_{\mu} \rightarrow v_{e}$ oscillation (v_{e} appearance)

\star Precision measurement of v_{μ} disappearance

2011^{∓ 7} $/_{120}$ + 3

T2K Collaboration

International collaboration (~500 members, 59 institutes, 12 countries)

2011年7月20日水曜日

🚽 😚 http://www.icepp.s.u-tokyo.ac.jp/~mihara/hecsec 🏫 🔻 C 🚼 🛪

JHF high energy physics workshop

Q 🔒 🖪 -

date ; 7-Jan-2000 / place ; Seminar Hall @ KEK はじめに (駒宮幸男 @ 東京大学) Session I ; Kaon Physics (chair : 山中) Introduction (山中 卓 @ 大阪大学) (gziped transparency , 638kbyte) K+ -> pi + nu nu-bar , T violation in Kmu3 decay (小松原 健 @ KEK田無) (gziped transparency , 1401kbyte) (新川 孝男 @ KEK) (gziped transparency , 1276kbyte) KL -> pi0 nu nu-bar TOF method (笹尾 登 @ 京都大学) (gziped transparency , 1130kbyte) KL -> pi0 nu nu-bar @ low energy (榴垣 隆雄 @ KEK) (gziped transparency , 1389kbyte) KL -> pi0 nu nu-bar @ high energy (山中 卓 @ 大阪大学) (gziped transparency , 1482kbyte) CPT experiment at JHF (青木 正治 @ KEK) (gziped transparency , 1482kbyte) まとめ (山中 卓 @ 大阪大学) (gziped transparency , 453kbyte)

Session II; Lepton Flavour Violation (chair: 森)

JHF Project の進行状況(永宮 正治 @ JHF 推進室) (gziped transparency, 951kbyte) 50GeV PS における大強度 muon beam (久野 良孝 @ KEK) (gziped transparency, 11225kbyte) LFV 実験 (森俊則 @ ICEPP) (gziped transparency, 1353kbyte) 全体での議論

Session III; Neutrino Physics (chair:野崎)

Future Prospect (久野 良孝 @ KEK) (gziped transparency, 2949kbyte) JHF での ニュートリノ振動実験

Introduction (西川 公一郎 @ 京都大学) (gziped transparency, 420kbyte) Summary of SK and K2K (伊藤 好孝 @ ICRR) (gziped transparency, 1895kbyte) Beam at JHF (小林 隆 @ KEK) (gziped transparency, 2059kbyte) nu_mu disappearance 実験(中谷 剛 @ 京都大学) (gziped transparency, 1161kbyte) nu_e appearance 実験(大林 由尚 @ ICRR) (gziped transparency, 1262kbyte) Sterile in long baseline (早戸 良成 @ KEK) (gziped transparency, 624kbyte) Medium baseline (小林 隆 @ KEK) (gziped transparency, 1993kbyte) まとめ (西川 公一郎 @ 京都大学) (gziped transparency, 73kbyte) 海外でのニュートリノ振動実験(小松 雅宏 @ 名古屋大学) (gziped transparency, 2368kbyte) 全体での議論

If you have any opinion , send an email to us !

Hajime Nishiguchi, Osamu Jinnouchi

24 lon 2000

2011年7月20日水曜日

Letter of Intent: A Long Baseline Neutrino Oscillation Experiment using the JHF 50 GeV Proton-Synchrotron and the Super-Kamiokande Detector

February 3, 2000

JHF Neutrino Working Group

Y. Itow¹, Y. Obayashi, Y. Totsuka Institute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188-8502, Japan

Y. Hayato, H. Ishino, T. Kobayashi², K. Nakamura, M. Sakuda Inst. of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), Tsukuba, Ibaraki 305-0801, Japan

T. Hara Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan

T. Nakaya³, K. Nishikawa⁴ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

T. Hasegawa, K. Ishihara, A. Suzuki Department of Physics, Tohoku University, Sendai, Miyagi, 980-8578, Japan

¹Super Kamiokande Contact Person: itow@suketto.icrr.u-tokyo.ac.jp
²Neutrino Beam Contact Person: kobayasi@neutrino.kek.jp
³Near Detector Contact Person: nakaya@scphys.kyoto-u.ac.jp
⁴Organizer: nishikaw@neutrino.kek.jp

Overview of this talk

- 1. Introduction of T2K experiment
- 2. Search for v_e appearance with 1.43 x 10²⁰ protons on target (p.o.t)
 - Analysis overview
 - v_e selection
 - The expected number of events at Far detector
 - Systematic uncertainty
 - Results
- 3. Conclusion

Experimental Setup

J-PARC Neutrino beam facility

Total # of protons used for analysis

Run 1 (Jan. '10 - June '10)

- 3.23 x 10¹⁹ p.o.t. for analysis
- 50kW stable beam operation

Run 2 (Nov. '10 - Mar. '11)

- 11.08 x 10¹⁹ p.o.t. for analysis
~145kW beam operation

Total # of protons used for this analysis is 1.43 x 10²⁰ pot 2% of T2K's final goal and x 5 exposure of the previous report

2011年7月20日水曜日

Off-axis beam : intense & narrow-band beam BNL E889 Design Report(1995)

Ev (GeV **2°** $\mu(\mathbf{m}_{\mu},\mathbf{p}_{\mu})$ 0.6 **3°** 0.4 dearee 0.2 0 p_<u>(</u>GeV **Off-Axis beam** Pπ Beam energy at oscillation max. $E_v \sim 0.6 \text{ GeV}$ (based on Δm_{23}^2 & L=295km) \rightarrow T2K off-axis angle is 2.5° (maximize physics sensitivity) Small v_e component (0.5%@peak) Small high energy tail \rightarrow small background

 π (m_{π},p_{π})

Accurate and stable beam pointing is important (Keep the peak energy stable)

Monitor beam direction and intensity

Stability of beam direction should be <1 mrad(to keep the peak energy at SK stable $\delta E < 2\%$)

- Muon monitor
 - monitor spill-by-spill

• On-axis INGRID

- monitor actual v beam day-by-day
- detector coverage is 10m x 10m

v beam stability

Stability of v beam direction (INGRID)

v beam dir. stability < 1mrad

Stability of beam direction should be <1 mrad (to keep the peak energy at SK stable δE <2%)

Stability of v interaction rate normalized by *#* of protons (INGRID)

integrated day(1 data point / 1 day)

2011年7月20日水曜日

Off-axis Near Detector (ND280)

- 0.2 T UA1 magnet
- Fine Grained Detector (FGD)
 - scintillator bars target (water target in FGD2)
 - 1.6ton fiducial mass for analysis
- Time Projection Chambers (TPC)
 - better than 10% dE/dx resolution
 - 10% momentum resolution at 1GeV/c

v_µ 30 events rate measuroment in present analysis

^v_{neutron} Fat detector (Super-K)

- Kamioka-cho, Gifu (2700mwe) 2km volume 22.5kton (Total 50kton) SK Atotsu Phase IV w/ Dead-time less DAQ system since September 2008 T2K event trigger by accelerator beam timing
 - atmospheric v samples as control samples to study detector performance.

Water Cherenkov detector w/ fiducial

Scienti

1km

11,129 x 20inch PMTs (inner detector, ID)

2011年7月20日水曜日

body kinematics)

Un-oscillated v

3km_

Ikeno-yama

Mozum

Japan

niv. of

11/3/11

GPS Timing Synchronization and Beam Event Selection

- "REALTIME" beam event selection has been applied.
- GPS Timing Accuracy < 150ns

Electron-like and muon-like event at SK

Search for v_e appearance

Analysis overview

- 1. Apply $\nu_{\rm e}$ selection criteria to the events at far detector (SK)
- 2. Compare # of observed events and # of expected events \rightarrow search for v_e appearance

Contents in this section

 $\checkmark v_{e}$ selection

- The expected number of events at Far detector
- Systematic uncertainty

📌 Results

v_e selection

The expected number of events at Far detector

Systematic uncertainty

📌 Results

T2K Signal & Background for v_e appearance

- Signal = single electron event
 - oscillated v_e interaction :

 $CCQE: v_e + n \rightarrow e + p$ (dominant process at T2K beam energy)

- Background
 - π^0 from NC interaction
 - intrinsic ν_{e} in the beam (from $\mu,$ K decays)

v_e selection at far detector (SK)

The selection criteria were optimized for initial running condition

The selection criteria were fixed before data taking started to avoid bias <u>7 selection cuts</u>

- 1. T2K beam timing & Fully contained (FC) (synchronized the beam timing, no activities in the OD)
- 2. In fiducial volume (FV)(distance btw recon. vertex and wall > 200 cm)
- 3. Single electron
 - (# of ring is one & e-like)
- 4. Visible energy > 100 MeV
- 5. No decay electron observed (no delayed electron signal)
- 6. Reconstructed invariant mass $(M_{inv}) < 105 \text{ MeV/c}^2$
- 7. Reconstructed neutrino energy $(E_{\rm rec}) < 1250 \; \text{MeV}$

1.Beam timing and FC cut

• Events in the T2K beam timing synchronized by GPS

relative event timing to the spill timing

 $\Delta T_0 = T_{GPS} @SK - T_{GPS} @J-PARC - TOF(~985 \mu sec)$

2. Fiducial volume cut (distance between recon. vertex and wall > 200cm)

3. Single electron cut (# of ring is one & e-like)

4. Visible energy > 100 MeV5. No decay electron observed (no delayed electron signal) (visible energy = electron-equivalent energy deposited in ID) * Reject events with muons or pions * Reject low energy events, such as which are invisible or NC background and decay mis-id mis-identified as *electron* electrons from invisible as e $(v_{\mu} \text{ events or })$ muon decays CC non-QE events) 4 Data Data Number of events /(100 MeV) Osc. v_{e} CC Osc. v_e CC ν_{μ} + $\overline{\nu}_{\mu}$ CC $v_{\mu} + \overline{v}_{\mu} CC$ $\nu_{e}\,CC$ $v_e CC$ Number of events 10 3 NC NC T2K MC T2K MC $\sin^2 2\theta_{13} = 0.1$ $\sin^2 2\theta_{13} = 0.1$ 2 this cut rejects 14% of this cut rejects 5 NC, 30% of v_{μ} CC bkg. 85% of v_{μ} CC bkg. 98% of signal remains 90% of signal remains with this cut with this cut 0 0 2 3 ≥5 0 1000 2000 3000 4 Number of decay-e Visible energy (MeV)

7. Reconstructed energy $(E_{rec}) < 1250 \text{ MeV}$

* Reject intrinsic beam ve backgrounds at high energy

* Signal ($v_{\mu} \rightarrow v_{e}$) has a sharp peak at $E_{v} \sim 600 MeV$

 (p_I, θ_I)

The expected number of events at Far detector

Systematic uncertainty

Expected # of events at Far detector

$$N_{SK}^{exp} = \left(R_{ND}^{\mu, \; Data}
ight) imes \left(rac{N_{SK}^{MC}}{R_{ND}^{\mu, \; MC}}
ight)$$

ND v_{μ} event rate

Measurement of the number of inclusive v_{μ} charged-current events in ND per p.o.t. using data collected in Run 1 (2.88 x 10¹⁹ p.o.t.)

Stability of the beam event rate is confirmed by INGRID measurement *INGRID v int. rate stability Run 1+2 / Run 1 < 1%*

F/N ratio for ve signal event

(flux) x (osc. prob.) x (x-section) x (efficiency) x (det. mass)

$$\frac{N_{SK \nu_e sig.}^{MC}}{R_{ND}^{\mu, MC}} = \frac{\int \Phi_{\nu_{\mu}}^{SK}(E_{\nu}) \cdot P_{\nu_{\mu} \to \nu_e}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}} \cdot \frac{M^{SK}}{M^{ND}} \cdot \text{POT}^{SK}$$

Neutrino flux prediction

Neutrino flux prediction

Predicted Neutrino Flux at SK

ν_{μ} interaction rates at near detector

• Measure # of inclusive v_{μ} charged current interaction (N^{Data}_{ND})

Event display (data)

High purity : 90% v_μ Charged Current int. (50% CCQE)

$$\begin{aligned} R_{ND}^{\mu, \ Data} &= 1529 \ \text{events} \ / \ 2.9 \times 10^{19} \ \text{p.o.t.} \\ \\ \frac{R_{ND}^{\mu, \ Data}}{R_{ND}^{\mu, \ MC}} &= 1.036 \pm 0.028 (\text{stat.})^{+0.044}_{-0.037} (\text{det. syst.}) \pm 0.038 (\text{phys. syst.}) \end{aligned}$$

The expected number of events for $\sin^2 2\theta_{13} = 0$

The expected number of events with 1.43 x 10²⁰ p.o.t.

 $N^{exp}_{SK tot.} = 1.5 \text{ events}$

v_e selection criteria

The expected number of events at Far detector

Systematic uncertainty

Observation at Far detector & Results

Systematic uncertainty on N^{exp}_{SK}

	error source	syst. error	for $sin^2 2A_{12}=0$
	(1) ν flux	$\pm 8.5\%$	
	(2) ν int. cross section	$\pm 14.0\%$	
	(3) Near detector	$^{+5.6}_{-5.2}\%$	
	(4) Far detector	$\pm 14.7\%$	
	(5) Near det. statistics	$\pm 2.7\%$	
	Total	$^{+22.8}_{-22.7}\%$	$\blacktriangleright N^{exp}_{SK} = 1.5 \pm 0.3$
			events
$N_{SK}^{exp} = \frac{R_{ND}^{\mu, Dat}}{R_{ND}^{\mu, Dat}}$	$\overset{ta}{ imes} imes ~ rac{N^{MC}_{SK}}{R^{\mu,~MC}_{ND}}$		
	$\int \Phi_{\nu_{\mu}(\nu_{e})}^{\rm SK}(E)$	$(E_{\nu}) \cdot P_{osc.}(E_{\nu})$	$\cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}$
	$\int \Phi_{\nu}^{N}$	$\prod_{\mu}^{\rm ND}(E_{\nu})\cdot \frac{\sigma(E_{\nu})}{\sigma(E_{\nu})}$	$\cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}$

Systematic uncertainty on N^{exp}_{SK}

error source	syst. error	for $sin^2 2A_{12}=0$
$O(1) \nu$ flux	$\pm 8.5\%$	
$O(2)$ ν int. cross section	$\pm 14.0\%$	
(3) Near detector	$^{+5.6}_{-5.2}\%$	
O(4) Far detector	$\pm 14.7\%$	
(5) Near det. statistics	$\pm 2.7\%$	
Total	$+22.8 \% \\ -22.7 \%$	$N^{exp}_{SK}=1.5\pm0.3$
		events
$N_{SK}^{exp} \;=\; {R_{ND}^{\mu,\;Data}} imes {N_{SK}^{MC}\over R_{ND}^{\mu,\;MC}}$		
$\int \Phi_{\nu_{\mu}(\nu_{e})}^{\rm SK}(E$	$(F_{\nu}) \cdot P_{osc.}(E_{\nu})$	$\cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}$
$\int \Phi_{\nu}^{N}$	$\sigma_{\mu}^{\mathrm{D}}(E_{\nu})\cdot \sigma(E_{\nu})$	$\cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}$

Neutrino flux uncertainty (2) ν cross section (3) Near detector

 $\Phi^{\rm SK}_{\nu_{\mu}(\nu_{e})}($

Uncertainties in hadron

production and interaction are dominant sources

- Error source
 - Pion production
 - NA61 systematic uncertainty in each pion's (p, θ) bin
 - Kaon production
 - Used model (FLUKA) is compared with the data(Eichten et. al.) in each kaon's (p, θ) bin
 - Secondary nucleon production
 - Used model (FLUKA) is compared with the experimental data
 - Secondary interaction cross section
 - Used model (FLUKA and GCALOR) is compared with the experimental data of interaction x-section (π , K and nucleon)

error source (1) ν flux

(4) Far detector

(5) Near det. statistics

$$\frac{E_{\nu}}{E_{\nu}} \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}$$

$$\Phi_{\nu_{\mu}}^{\rm ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}$$

Summary of v flux uncertainties on N^{exp}_{SK} for $sin^22\theta_{13}=0$

		$N^{exp}_{SK} =$	$R_{ND}^{\mu,\ Data}$	$ imes \; rac{1 {}^{\circ} SK}{R^{\mu,\;MC}_{ND}}$
Error source	$R^{\mu,\ MC}_{ND}$	N_{SK}^{MC}	$\frac{N_{SK}^{MC}}{R_{ND}^{\mu, \ MC}}$	
Pion production	5.7%	6.2%	2.5%	
Kaon production	10.0%	11.1%	7.6%	Hadron
Nucleon production	5.9%	6.6%	1.4%	<i>production</i>
Production x-section	7.7%	6.9%	0.7%	
Proton beam position/profile	2.2%	0.0%	2.2%	
Beam direction measurement	2.7%	2.0%	0.7%	
Target alignment	0.3%	0.0%	0.2%	
Horn alignment	0.6%	0.5%	0.1%	
Horn abs. current	0.5%	0.7%	0.3%	
Total	15.4%	16.1%	(8.5%)	

The uncertainty on N^{exp}_{SK} due to the beam flux syst. is 8.5%

 $\mathbf{N}MC$

Summary of v flux uncertainties on N^{exp}_{SK} for $sin^22\theta_{13}=0$

		$N^{exp}_{SK} =$	$R_{ND}^{\mu,\;Data}$	$ imes \; rac{1 {}^{\circ} SK}{R^{\mu,\;MC}_{ND}}$
Error source	$R^{\mu, \ MC}_{ND}$	N_{SK}^{MC}	$\frac{N_{SK}^{MC}}{R_{ND}^{\mu, \ MC}}$	
Pion production	5.7%	6.2%	2.5%	
Kaon production	10.0%	11.1%	7.6%	Hadron
Nucleon production	5.9%	6.6%	1.4%	<i>production</i>
Production x-section	7.7%	6.9%	0.7%	
Proton beam position/profile	2.2%	0.0%	2.2%	
Beam direction measurement	2.7%	2.0%	0.7%	
Target alignment	0.3%	0.0%	0.2%	
Horn alignment	0.6%	0.5%	0.1%	
Horn abs. current	0.5%	0.7%	0.3%	
Total	15.4%	16.1%	(8.5%)	

The uncertainty on N^{exp}_{SK} due to the beam flux syst. is 8.5% Error cancellation works for some beam uncertainties

NMC

2011年7月20日水曜日

v int. cross section uncertainty on N^{exp}_{SK} for sin²2 θ_{13} =0

 $(1) \nu$ flux

 $(1) \nu$ mux

(2) ν cross section

(3) Near detector

(4) Far detector

(5) Near det. statistics

	\sim	lain v interaction in each event	
Frror source		NC background : NC1 π^0	
LIIOI Source		Beam v_{e} background $: v_{e}$ CCQE	
Source	syst. error on N_{SK}^{exp}	Signal : v_e CCQE	
CC QE shape	3.1%	- ND CC event : CCQE(50%) $CC1\pi(22\%)$	
${ m CC}1\pi$	2.2%	CCTR(2370)	
CC Coherent π	3.1%		
CC Other	4.4%		
NC $1\pi^0$	5.3%		
NC Coherent π	2.3%		
NC Other	2.3%		
$\sigma(u_e)$	3.4%	Uncertainty in pion's	
\mathbf{FSI}	10.1%	final state interaction	
Total	14.0%	is dominant	

The uncertainty on N^{exp}_{SK} due to the v x-section syst. is 14% (sin²2 θ_{13} =0)

Far detector uncertainty

error source (1) ν flux (2) ν cross section (3) Near detector (4) Far detector (5) Near det. statistics

$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{\mathrm{SK}}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{\mathrm{ND}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) dE_{\nu}}$$

- Uncertainty due to the SK detector systematics
- Evaluate using various control sample

Uncertainty of $\sum_{n=0}^{200} C \pi^0$ rejection

Topological control sample of π^0 Q_{15} -10 -5 made by combining one data electron + Normalized by number of events one simulated γ

2500

500

5

10

PID likelihood

15

 π^0 efficiency=6.8±0.7(syst.)%

Uncertainty of v_e CCQE selection efficiency detection efficiency of v_e CC (for dominant BG and signal) atmospheric v sample subsample which satisfies all T2K ve selection criteria (signal-like) and sidebands ve CC singlev, CC single- e ve CC singleve CC other v_e CC other CC other signal-like signal-like v_{μ} CC v_{μ} CC 220 350 signal-like CC 140 200 NC NC NC (1-ring) e-like) 180 300 120 160 250 100 140 120 200 80 100 150 60 sideband-A 80 sideband-B sideband-C 60 100 40 (µ-like) 40 multi-ring 50 20 20 015 9₁₀ 200 250 150 - 2 2 - 5 10 100 300 - 10 6 mass [MeV] ID parameter **PID** parameter **Ring Counting Parameter** Invariant mass

From comparisons btw the atmv data and MC, we constrain selection efficiency of each cuts.

	Efficiency [%] Efficiency [%]	
	(T2K beam ν_e) (T2K signal ν_e)	
Ring-counting	96.8 ± 1.9 (syst.) 96.6 ± 1.6 (syst.)	t.)
PID	98.9 ± 1.1 (syst.) 98.8 ± 1.4 (syst)	t.)
POLfit mass	90.1 ± 6.1 (syst.) 90.7 ± 4.1 (syst.)	t.)

Particle ID uncertainty study

The mis-ID fraction and the likelihood are well reproduced. \rightarrow PID uncertainty < 1%

Summary of Far detector systematics uncertainty

Error source	$\frac{\delta N^{MC}_{SK \ \nu_e \ sig.}}{N^{MC}_{SK \ \nu_e \ sig.}}$	$\frac{\delta N^{MC}_{SK\ bkg.\ tot.}}{N^{MC}_{SK\ bkg.\ tot.}}$
π^0 rejection	_	3.6%
Ring counting	3.9%	8.3%
Electron PID	3.8%	8.0%
Invariant mass cut	5.1%	8.7%
Fiducial volume cut etc.	1.4%	1.4%
Energy scale	0.4%	1.1%
Decay electron finding	0.1%	0.3%
Muon PID	_	1.0%
Total	7.6%	15%

Total Systematic uncertainties

Summary of systematic uncertainties on N^{exp}SK total. for sin²20₁₃=0 and 0.1

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	cf.
O(1) Beam flux	$\pm 8.5\%$	$\pm 8.5\%$	sin ² 2θ ₁₃ =0: #sia = 0.1 #bka = 1.4
$igodolmop(2) \ u$ int. cross section	$\pm 14.0\%$	$\pm 10.5\%$	
(3) Near detector	$^{+5.6}_{-5.2}\%$	+5.6 % -5.2 %	sın²20 ₁₃ =0.1: #siq = 4.1 #bkq = 1.3
O(4) Far detector	$\pm 14.7\%$	$\pm 9.4\%$	
(5) Near det. statistics	$\pm 2.7\%$	$\pm 2.7\%$	
Total	$\begin{pmatrix} +22.8 \\ -22.7 \end{pmatrix}$	$^{+17.6}_{-17.5}\%$	

 $N^{exp}_{SK tot.} = 1.5 \pm 0.3$ at $\sin^2 2\theta_{13} = 0$

Total Systematic uncertainties

Summary of systematic uncertainties on N^{exp}_{SK total.} for sin²20₁₃=0 and 0.1

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	cf.
O(1) Beam flux	$\pm 8.5\%$	$\pm 8.5\%$	sin ² 2θ ₁₃ =0: #sia = 0.1 #bka = 1.4
$\mathbf{O}(2) \ \nu$ int. cross section	$\pm 14.0\%$	$\pm 10.5\%$	
(3) Near detector	$^{+5.6}_{-5.2}\%$	$^{+5.6}_{-5.2}\%$	sin ² 20 ₁₃ =0.1: #sig = 4.1 #bkg = 1.3
O(4) Far detector	$\pm 14.7\%$	$\pm 9.4\%$	
(5) Near det. statistics	$\pm 2.7\%$	$\pm 2.7\%$	
Total	$\begin{pmatrix} +22.8 \ -22.7 \ \% \end{pmatrix}$	$+17.6\% \\ -17.5\%$	
		(due to s uncert	mall Far det. tainty for signal)

$$N^{exp}_{SK tot.} = 1.5 \pm 0.3$$
 at $\sin^2 2\theta_{13} = 0$

The expected number of events at Far detector

Systematic uncertainty

Results

ν_e candidate events

Further check

Check several distribution of v_e candidate events

Vertex distribution of v_e candidate events

Events tend to cluster at large R

C Event outside FV

→ Perform several checks. for example

- * Check distribution of events outside FV \rightarrow no indication of BG contamination
- * Check distribution of OD events \rightarrow no indication of BG contamination
- * A K.S. test on the R² distribution yields a p-value of 0.03

Results for v_e appearance search with 1.43 x 10²⁰ p.o.t.

The observed number of events is **6**

The expected number of events is 1.5 ± 0.3

for $\sin^2 2\theta_{13}=0$

→ Probability to observe 6 or more events is 0.7%, assuming θ_{13} =0, corresponding to 2.5 σ significance.

Allowed region of $sin^2 2\theta_{13}$ for each Δm^2_{23}

Feldman-Cousins method was used

Allowed region of $sin^2 2\theta_{13}$ for each δ_{CP}

90% C.L. interval (assuming $\Delta m_{23}^2=2.4 \times 10^{-3} \text{ eV}^2$, $\delta_{CP}=0$)

```
0.03 < \sin^2 2\theta_{13} < 0.28
```

 $0.04 < \sin^2 2\theta_{13} < 0.34$

2011年7月20日水曜日

T2K Next steps

Aim to establish v_e appearance and to determine the angle θ_{13}

This result is obtained by only 2% exposure of T2K's goal.

- Plan for re-starting experiment in this calendar year
 - Recovery works in progress
- Analysis improvement
 - New analysis methods using ν_{e} signal shape (e.g. recon. energy) are under developing
 - Improve uncertainties in the Super-K for subdominant BG sources, *i.e.* π^{\pm} , $\pi^{\pm}\pi^{0}$, $\mu\pi^{0}$ etc.

Conclusion

- We reported new results from $v_{\mu} \rightarrow v_{e}$ oscillation analysis based on 1.43 x 10²⁰ p.o.t. (2010 Jan. 2011 Mar.)
 - Observe 6 candidate events
 - # of expected events = 1.5 ± 0.3 (syst.) (sin²2 $\theta_{13} = 0$)
 - Under null θ_{13} hypothesis, prob. of observing 6 or more events is 0.007, equivalent to 2.5 σ significance.
 - 0.03 (0.04) < sin²2θ₁₃ < 0.28 (0.34) at 90% C.L. for normal (inverted) hierarchy (assuming Δm^2_{23} =2.4 x 10⁻³ eV², δ_{CP}=0, sin²2θ₂₃=1.0)

Indication of $v_{\mu} \rightarrow v_{e}$ appearance

This result was published as Phys. Rev. Lett. 107, 041801 (2011)

Reference: arXiv:1106.1238 for the T2K experimental setup.

- Plan for improve the measurement after recovery of the experiment in this calendar year
- v_{μ} disappearance result with 1.43 x 10²⁰ p.o.t. data will be reported this summer

Backup
Toward full picture of neutrino masses and mixings

Discovery of $(\theta_{23}, \Delta m^2_{23})$ $\rightarrow (\theta_{12}, \Delta m^2_{12})^{\text{solar, reactor } \nu}$ $\rightarrow \theta_{13} \text{ in a few year?}$

If θ_{13} is really large (sin²2 θ_{13} ~0.1) as indicated by T2K, we have to think very seriously how to explore last v's parameter in the MNS matrix:

δ

x20 Larger Target

Photo-Detectors

Quest for CP Violation in lepton sector.

<u>v0.6GeV vµ</u> 295km

Super-K

Higher Intensity

高度

JPARC

© 2010 ZENRIN Data © 2010 MIRC/JHA © 2010 Cnes/Spot Image © 2010 Mapabc.com

<u>36°24'46.66" N 139°18'01.27" E 標高 214 メートル</u>

Hyper_K

78

....Google

188.55 キロメートル

Compare electron appearance (number and spectrum) in ν and anti- ν beam

2011年7月20日水曜日

CPV discovery potential

Proton Decay - explore quark/lepton unification -

 $p \rightarrow e^{+} \pi^{0}$ • 1.0 x 10³⁴ years (Super-K I+II+II @ 90% C.L.)

 \rightarrow <u>1 x 10³⁵ years</u> (0.54Mton x 10yrs @ 90% CL)

 $p \rightarrow v K^+$

• 3.3 x 10³³ years (Super-K I+II+III @ 90%C.L.)

 \rightarrow <u>2 x 10³⁴ years</u> (0.54 Mton x 10yrs @ 90% CL)

Hyper-K Base-Design

- 1Mton total volume, twin cavity
- 0.54Mton fiducial volume
- Inner (D43m x L250m) x 2
- Outer Detector >2m
- Photo coverage 20% (1/2 x SK)
 - Base-design to be optimized
 - Geological survey of the site is going on
 - Qualitative studies on physics potential

