Heavy hadron axial couplings from Lattice QCD

Phys.Rev.**D84** (2011) 094502 (ChPT details) Phys.Rev.Lett. **108** (2012) 172003 (Short letter) Phys.Rev.**D85** (2012) 114508 (Lattice details)

C.-J. David Lin (National Chiao-Tung U.)
Work done with William Detmold and Stefan Meinel (W&M → MIT)

23/07/2012 KMI Nagoya

Motivation

- ullet LHCb phenomenology, b baryon physics.
- First step: better control of chiral extrapolations in lattice calculations.
- Heavy hadron decay widths.

Outline

- Heavy hadron chiral perturbation theory.
- Axial couplings.
- Numerical calculation.
- Heavy hadron decay widths.

Single-HQ hadron states in $HH\chi PT$

Heavy mesons,

$$H_i^{(\overline{b})} = \left(B_{i,\mu}^* \gamma^{\mu} - B_i \gamma_5\right) \frac{1 - \not b}{2}.$$

• Heavy baryons with $s_l = 0$ (s = 1/2),

$$T = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \Lambda_b \\ -\Lambda_b & 0 \end{pmatrix}.$$

• Heavy baryons with $s_l = 1$,

$$S_{ij}^{\mu} = \sqrt{\frac{1}{3}} (v^{\mu} + \gamma^{\mu}) \gamma_5 \mathcal{B}_{ij} + \mathcal{B}_{ij}^{*\mu} \quad (\mathcal{B}_{ij} : s = 1/2, \ \mathcal{B}_{ij}^* : s = 3/2)$$

$$\mathcal{B} = \begin{pmatrix} \Sigma_b^{+1} & \frac{1}{\sqrt{2}} \Sigma_b^0 \\ \frac{1}{\sqrt{2}} \Sigma_b^0 & \Sigma_b^{-1} \end{pmatrix}, \ \mathcal{B}^* = \begin{pmatrix} \Sigma_b^{+*} & \frac{1}{\sqrt{2}} \Sigma_b^{0*} \\ \frac{1}{\sqrt{2}} \Sigma_b^{0*} & \Sigma_b^{-*} \end{pmatrix}.$$

Symmetries in $HH\chi PT$

- Heavy-quark spin, $S_h: H_i^{(\overline{b})} \to H_i^{(\overline{b})} S_h^{-1}$, and similarly for T and $S^\mu.$
- Chiral, $L \times R$.
- Unbroken light-flavour, U(x):

$$H_i^{(\overline{b})}(x) \to U_i^{j}(x) H_j^{(\overline{b})}(x), \ T_{ij} \to U_i^{k}(x) U_j^{l}(x) T_{kl}, \ S_{ij}^{\mu} \to U_i^{k}(x) U_j^{l}(x) S_{kl}^{\mu},$$

- \Rightarrow Use the " ξ -basis" for the Goldstone fields.
 - $-\xi \equiv \exp(i\Phi/f) = \sqrt{\Sigma}$
 - $-\xi(x) \to L \xi(x) U^{\dagger}(x) = U(x) \xi(x) R^{\dagger}.$
 - Vector and axial fields transform involving only U(x),

$$V^{\mu} = \frac{1}{2} \left(\xi^{\dagger} \partial^{\mu} \xi + \xi \partial^{\mu} \xi^{\dagger} \right), \ A^{\mu} = \frac{i}{2} \left(\xi^{\dagger} \partial^{\mu} \xi - \xi \partial^{\mu} \xi^{\dagger} \right).$$

- Vector field transforms like "gauge field".

$HH\chi PT$ Lagrangian

G.Burdman and J.Donoghue; P.Cho; M.B.Wise; T.M.Yan et al.; circa 1991.

$$\mathcal{L}_{HH\chi PT} = \mathcal{L}_{HH} + \mathcal{L}_{pure-Goldstone},$$

$$\mathcal{L}_{\mathsf{HH}}^{(\mathsf{LO})} = -i \operatorname{tr}_{\mathsf{D}} \left[\bar{H}^{(\bar{b})i} v_{\mu} \mathcal{D}^{\mu} H_{i}^{(\bar{b})} \right] + i \left(\bar{T} v_{\mu} \mathcal{D}^{\mu} T \right)_{\mathsf{f}} - i \left(\bar{S}^{\nu} v_{\mu} \mathcal{D}^{\mu} S_{\nu} \right)_{\mathsf{f}} + \Delta^{(B)} \left(\bar{S}^{\nu} S_{\nu} \right)_{\mathsf{f}}$$

$$+ g_{\mathsf{1}} \operatorname{tr}_{\mathsf{D}} \left[\bar{H}_{i}^{(\bar{b})} \gamma_{\mu} \gamma_{\mathsf{5}} H_{j}^{(\bar{b})} A^{ij} \right] + i g_{\mathsf{2}} \epsilon_{\mu\nu\sigma\rho} \left(\bar{S}^{\mu} v^{\nu} A^{\sigma} S^{\rho} \right)_{\mathsf{f}} + \sqrt{2} g_{\mathsf{3}} \left[\left(\bar{T} A^{\mu} S_{\mu} \right)_{\mathsf{f}} + \left(\bar{S}_{\mu} A^{\mu} T \right)_{\mathsf{f}} \right].$$

- HH's are (almost) onshell, with fixed velocities.
- Chiral covariant derivatives involve the vector field, V^{μ} .
- $\Delta^{(B)}$ does not vanish in the chiral and HQ limits.
- \bullet Three LEC's in $\mathcal{L}_{HH}^{(LO)},$ not well determined.
- More mass splittings from higher-order terms in the χ and HQ expansions.

Axial currents

$$J_{ij,\mu}^{A} = g_{1} \operatorname{tr}_{D} \left[\bar{H}_{k}^{(\bar{b})} H_{l}^{(\bar{b})} \left(\tau_{ij,\xi}^{(+)} \right)^{kl} \gamma_{\mu} \gamma_{5} \right] + i g_{2} \, \epsilon_{\mu\nu\sigma\rho} \left(\bar{S}^{\nu} v^{\sigma} \tau_{ij,\xi}^{(+)} S^{\rho} \right)_{f}$$
$$+ \sqrt{2} \, g_{3} \left[\left(\bar{S}_{\mu} \tau_{ij,\xi}^{(+)} T \right)_{f} + \left(\bar{T} \tau_{ij,\xi}^{(+)} S_{\mu} \right)_{f} \right] + \text{higher order.}$$

- $\tau_{ij,\xi}^{(+)} = (\xi^{\dagger}\tau_{ij}\xi + \xi\tau_{ij}\xi^{\dagger})/2$, where $(\tau_{ij})_{kl} = \delta_{il}\delta_{jk}$.
- Obtained using the Noether theorem.
- Matrix elements,

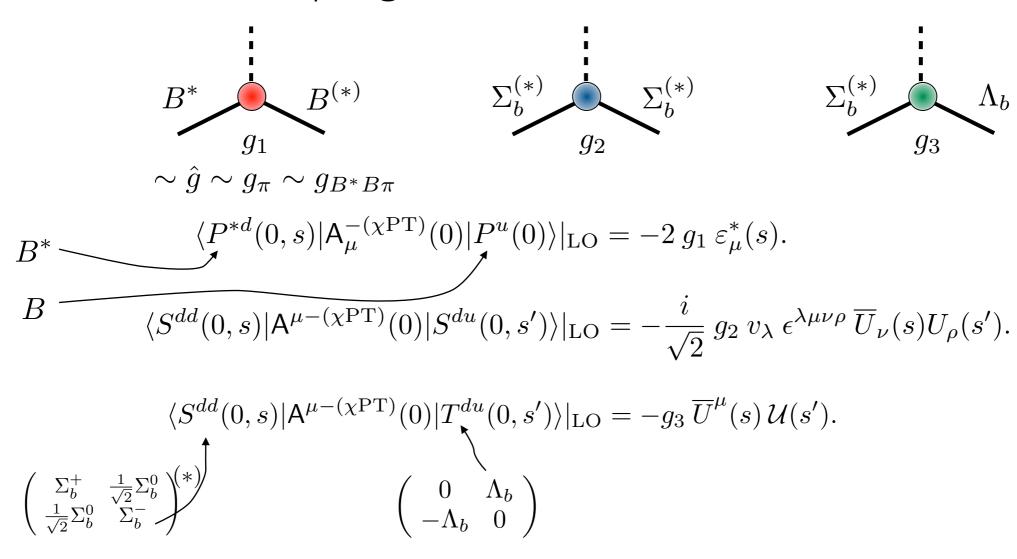
$$\langle B_j^* | J_{ij,\mu}^A | B_i \rangle = -2 (g_1)_{\text{eff}} \epsilon_{\mu}^*,$$

$$\langle S_{kj} | J_{ij,\mu}^A | S_{ki} \rangle = -\frac{i}{\sqrt{2}} (g_2)_{\text{eff}} v^{\sigma} \epsilon_{\sigma\mu\nu\rho} \bar{U}^{\nu} U^{\rho},$$

$$\langle S_{kj} | J_{ij,\mu}^A | T_{ki} \rangle = -(g_3)_{\text{eff}} \bar{U}_{\mu} \mathcal{U}.$$

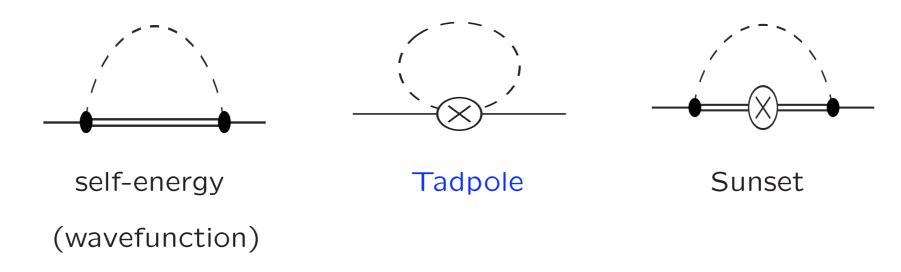
Chiral dynamics of heavy hadrons

Axial couplings defined in static limit



 Heavy-light mesons and baryons: dynamics amenable to HQ and chiral expansions [Wise; Burdman & Donoghue; Cheng et al.]

Generic one-loop structure

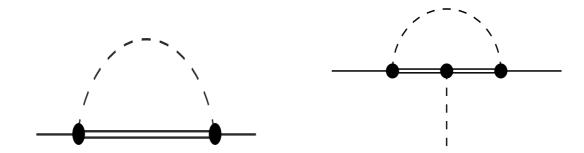


- Self-energy and sunset are $O(g_{1,2,3}^2)$ higer compared to tadpole.
- Generic NLO formula

$$\mathcal{A} = \mathcal{A}_{LO} \left(1 + g^2 L + g'^2 L' + L'' \right) + \mathcal{A}_{NLO-analytic}.$$

 $\mathcal{A}_{\mathrm{LO}} \sim g$ for axial current matrix elements.

Comparison with $\langle H_1|H_2\pi\rangle$ result

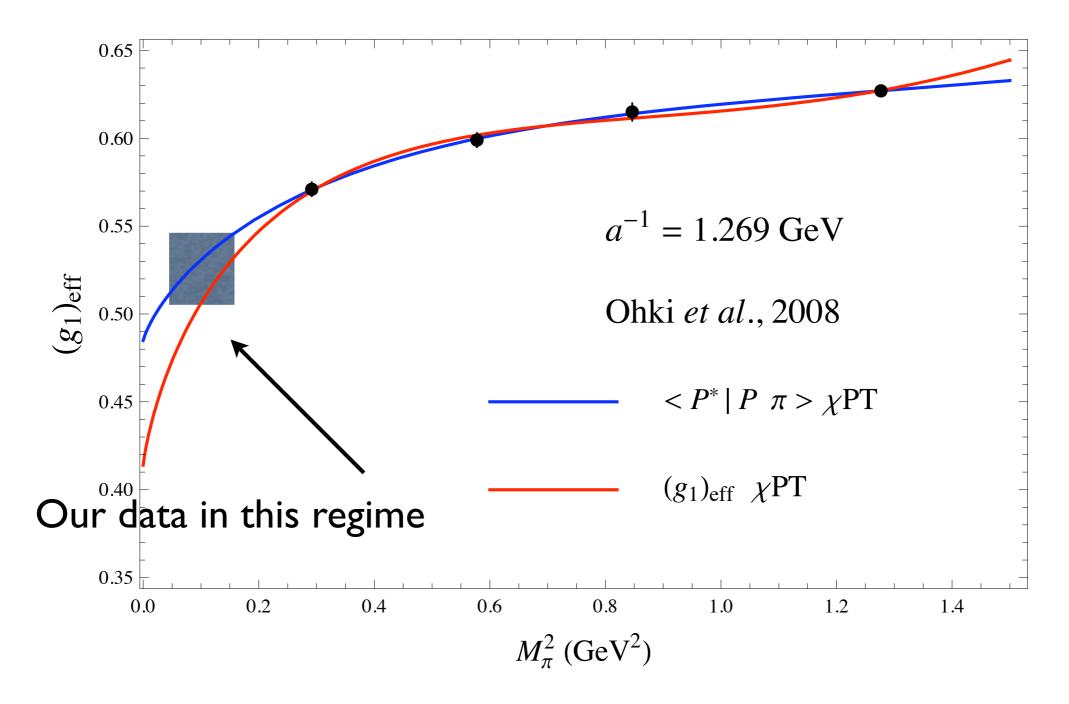


- Tadpole in $\langle H_1|H_2\pi\rangle$ is 1/3 of that in $(g_i)_{\text{eff}}$.
 - ⇒ It cancels with pion wavefunction renormalisation.
- For $(g_1)_{\text{eff}}$ and $\langle P^*|P\pi\rangle$,

$$(g_1)_{\text{eff}} = g_1 \left[1 - 2 \left(\frac{M_{\pi}^2}{4\pi f} \right) \log \left(\frac{M_{\pi}^2}{\mu^2} \right) - 4g_1^2 \left(\frac{M_{\pi}^2}{4\pi f} \right) \log \left(\frac{M_{\pi}^2}{\mu^2} \right) + c(\mu) M_{\pi}^2 \right],$$

$$\langle P^* | P\pi \rangle = g_1 \left[1 - 2 \left(\frac{M_{\pi}^2}{4\pi f} \right) \log \left(\frac{M_{\pi}^2}{\mu^2} \right) + c'(\mu) M_{\pi}^2 \right].$$

Impact on recent numerical computations



Current knowledge of g1,2,3

Model estimates for g_{1,2,3} [Cho normalisation]

Reference	Method	g_1	g_2	g_3
Yan et al., 1992 [5]	Nonrelativistic quark model	1	2	$\sqrt{2}$
Colangelo <i>et al.</i> , 1994 [45]	Relativistic quark model	1/3		• • •
Bećirević, 1999 [46]	Quark model with Dirac eq.	0.6 ± 0.1		• • •
Guralnik <i>et al.</i> , 1992 [47]	Skyrme model	• • •	1.6	1.3
Colangelo <i>et al.</i> , 1994 [48]	Sum rules	0.15 - 0.55		• • •
Belyaev et al., 1994 [49]	Sum rules	0.32 ± 0.02		• • •
Dosch and Narison, 1995 [50]	Sum rules	0.15 ± 0.03	• • •	• • •
Colangelo and Fazio, 1997 [51] Sum rules	0.09 - 0.44	• • •	• • •
Pirjol and Yan, 1997 [52]	Sum rules	• • •	$<\sqrt{6-g_3^2}$	$<\sqrt{2}$
Zhu and Dai, 1998 [53]	Sum rules	• • •	$1.56 \pm 0.30 \pm 0.30$	$0.94 \pm 0.06 \pm 0.20$
Cho and Georgi, 1992 [54]	$\mathcal{B}[D^* \to D \pi], \mathcal{B}[D^* \to D \gamma]$	0.34 ± 0.48	• • •	• • •
Arnesen $et al., 2005 [57]$	$\mathcal{B}[D_{(s)}^* \to D_{(s)}\pi], \mathcal{B}[D_{(s)}^* \to D_{(s)}\gamma], \Gamma[D^*]$	0.51		
Li et al., 2010 [58]	$\mathrm{d}\Gamma[B o\pi\ell u]$	< 0.87		

- All over the place!
- Precise calculation needed

Current knowledge of gi

- Experimental extraction of g_I from $D^* \to D\pi, \ D^* \to D\gamma$
 - $g_1 = 0.5(?)$ [Arnesen et al.]
- Lattice calculations for g₁

Reference	n_f , action	$[m_{\pi}^{(\mathrm{vv})}]^2 \; (\mathrm{GeV}^2)$	g_1
De Divitiis <i>et al.</i> , 1998 [14]	0, clover	0.58 - 0.81	$0.42 \pm 0.04 \pm 0.08$
Abada et al., 2004 [15]	0, clover	0.30 - 0.71	$0.48 \pm 0.03 \pm 0.11$
Negishi $et \ al., 2007 [16]$	0, clover	0.43 - 0.72	0.517 ± 0.016
Ohki <i>et al.</i> , 2008 [17]	2, clover	0.24 - 1.2	$0.516 \pm 0.005 \pm 0.033 \pm 0.028 \pm 0.028$
Bećirević <i>et al.</i> , 2009 [18]	2, clover	0.16 - 1.2	$0.44 \pm 0.03^{+0.07}_{-0.00}$
Bulava $et \ al., 2010 \ [19]$	2, clover	0.063 - 0.49	0.51 ± 0.02

Need fully quantified uncertainties

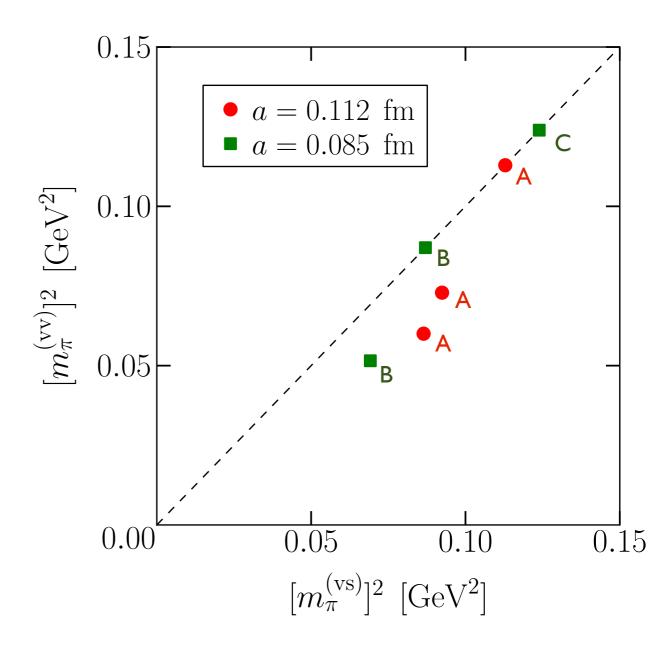
Actions and ensembles

- Domain-wall light quarks [RBC/UKQCD]
 - Lattice chiral symmetry
- Static heavy quarks with n_{HYP}=0,1,2,3,5,10 levels of HYP smearing
- Two lattice spacings
 a = 0.085, 0.112 fm
- Six <u>valence</u> quark masses $m_{\pi} = 0.23-0.35$ GeV
- Single $(2.5 \text{ fm})^3 \text{ volume}$

Ensemble	a (fm)	$L^3 \times T$	$am_{u,d}^{(\mathrm{sea})}$	$m_{\pi}^{(\mathrm{ss})} \; (\mathrm{MeV})$
A	0.1119(17)	$24^3 \times 64$	0.005	336(5)
В	0.0849(12)	$32^3 \times 64$	0.004	295(4)
С	0.0848(17)	$32^3 \times 64$	0.006	352(7)
Ensemble	$am_{u,d}^{(\mathrm{val})}$ m	$ \frac{(vs)}{\pi} \text{ (MeV)} $	$m_{\pi}^{(\mathrm{vv})} \; (\mathrm{MeV})$	t/a
A	0.001	294(5)	245(4)	4, 5,, 10
A	0.002	304(5)	270(4)	4, 5,, 10
A	0.005	336(5)	336(5)	4, 5,, 10
В	0.002	263(4)	227(3)	6, 9, 12
В	0.004	295(4)	295(4)	6, 9, 12
С	0.006	352(7)	352(7)	13

Actions and ensembles

- Domain-wall light quarks [RBC/UKQCD]
 - Lattice chiral symmetry
- Static heavy quarks with n_{HYP}=0,1,2,3,5,10 levels of HYP smearing
- Two lattice spacings
 a = 0.085, 0.112 fm
- Six <u>valence</u> quark masses $m_{\pi} = 0.23-0.35$ GeV
- Single $(2.5 \text{ fm})^3 \text{ volume}$



• O(a) improved* axial current:

$$Z_A = \begin{cases} 0.7019(26) & \text{for } a = 0.112 \text{ fm,} \\ 0.7396(17) & \text{for } a = 0.085 \text{ fm.} \end{cases}$$
 [RBC]

Correlation functions

Interpolating operators in static limit

$$P^{i} = \overline{Q}_{a\alpha} (\gamma_{5})_{\alpha\beta} \tilde{q}_{a\beta}^{i},$$

$$P_{\mu}^{*i} = \overline{Q}_{a\alpha} (\gamma_{\mu})_{\alpha\beta} \tilde{q}_{a\beta}^{i},$$

$$S_{\mu\alpha}^{ij} = \epsilon_{abc} (C\gamma_{\mu})_{\beta\gamma} \tilde{q}_{a\beta}^{i} \tilde{q}_{b\gamma}^{j} Q_{c\alpha},$$
$$T_{\alpha}^{ij} = \epsilon_{abc} (C\gamma_{5})_{\beta\gamma} \tilde{q}_{a\beta}^{i} \tilde{q}_{b\gamma}^{j} Q_{c\alpha}.$$

Two point and three point correlation functions

$$C[P^{u} P_{u}^{\dagger}](t) = \sum_{\mathbf{x}} \langle P^{u}(\mathbf{x}, t) P_{u}^{\dagger}(0) \rangle,$$

$$C[P^{*d} P_{d}^{*\dagger}]^{\mu\nu}(t) = \sum_{\mathbf{x}} \langle P^{*d \mu}(\mathbf{x}, t) P_{d}^{*\nu\dagger}(0) \rangle,$$

$$C[S^{dd} \overline{S}_{dd}]^{\mu\nu}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S^{dd \mu}_{\alpha}(\mathbf{x}, t) \overline{S}^{\nu}_{dd \beta}(0) \rangle,$$

$$C[S^{du} \overline{S}_{du}]^{\mu\nu}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S^{du \nu}_{\alpha}(\mathbf{x}, t) \overline{S}^{\nu}_{du \beta}(0) \rangle,$$

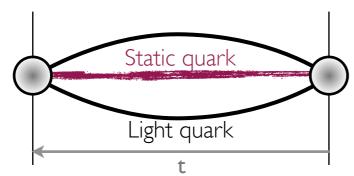
$$C[T^{du} \overline{T}_{du}]_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle T^{du}_{\alpha}(\mathbf{x}, t) \overline{T}_{du \beta}(0) \rangle.$$

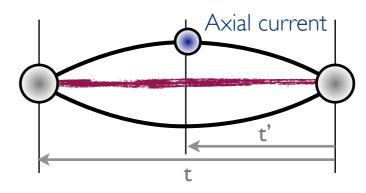
$$C[P^{*d} A P_{u}^{\dagger}]^{\mu\nu}(t, t') = \sum_{\mathbf{x}} \sum_{\mathbf{x}'} \langle P^{*d \mu}(\mathbf{x}, t) A^{\nu}(\mathbf{x}', t') P_{u}^{\dagger}(0) \rangle,$$

$$C[S^{dd} A \overline{S}_{du}]^{\mu\nu\rho}_{\alpha\beta}(t, t') = \sum_{\mathbf{x}} \sum_{\mathbf{x}'} \langle S^{dd \mu}_{\alpha}(\mathbf{x}, t) A^{\nu}(\mathbf{x}', t') \overline{S}^{\rho}_{du \beta}(0) \rangle,$$

$$C[S^{dd} A \overline{T}_{du}]^{\mu\nu}_{\alpha\beta}(t, t') = \sum_{\mathbf{x}} \sum_{\mathbf{x}'} \langle S^{dd \mu}_{\alpha}(\mathbf{x}, t) A^{\nu}(\mathbf{x}', t') \overline{T}_{du \beta}(0) \rangle,$$

$$C[T^{du} A^{\dagger} \overline{S}_{dd}]^{\mu\nu}_{\alpha\beta}(t, t') = \sum_{\mathbf{x}} \sum_{\mathbf{x}'} \langle T^{du}_{\alpha}(\mathbf{x}, t) A^{\mu\dagger}(\mathbf{x}', t') \overline{S}^{\nu}_{dd \beta}(0) \rangle.$$

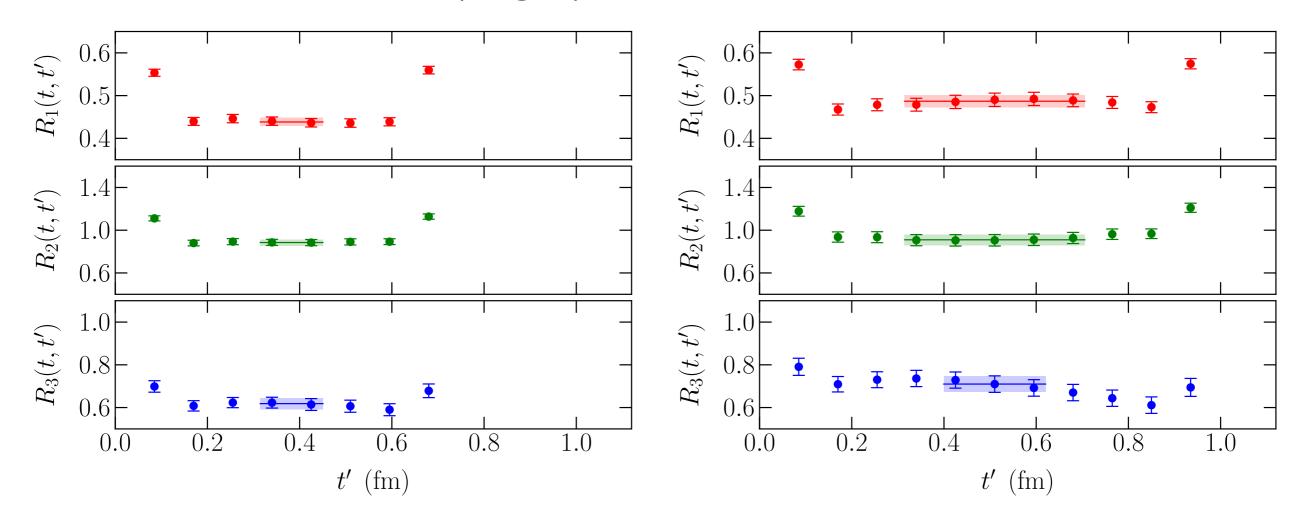




Calculate with forward propagators from 2 sources

Correlator ratios

Ratios for varying operator insertion time



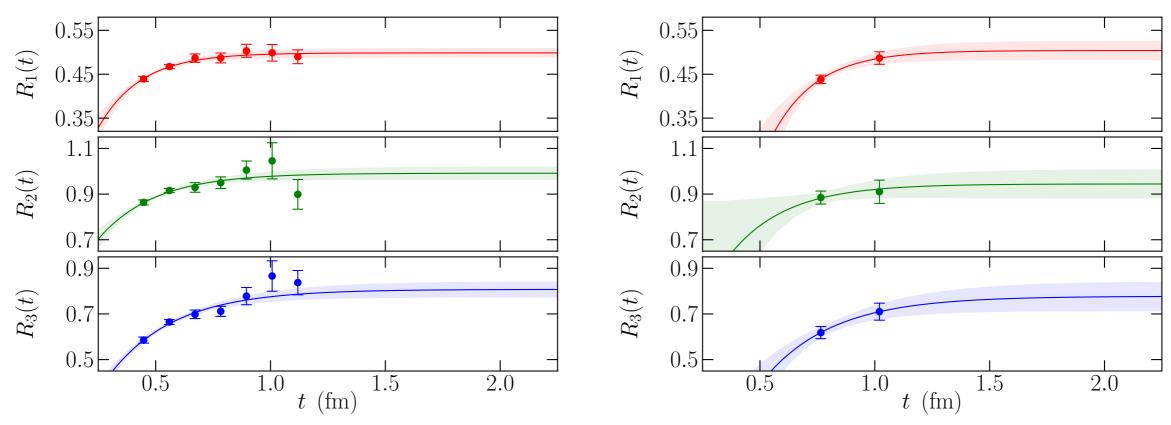
Negligible t' dependence away from source/sink

Source-sink separation

Extract effective axial couplings (g_i)_{eff} from t extrapolation

$$R_i(t, a, m_{\pi}, n_{\text{HYP}}) = (g_i)_{\text{eff}}(a, m_{\pi}, n_{\text{HYP}}) - A_i(a, m_{\pi}, n_{\text{HYP}})e^{-\delta_i(a, m_{\pi}, n_{\text{HYP}})t}$$

• Constrain δ_i for a=0.086 fm from δ_i at a=0.112 fm



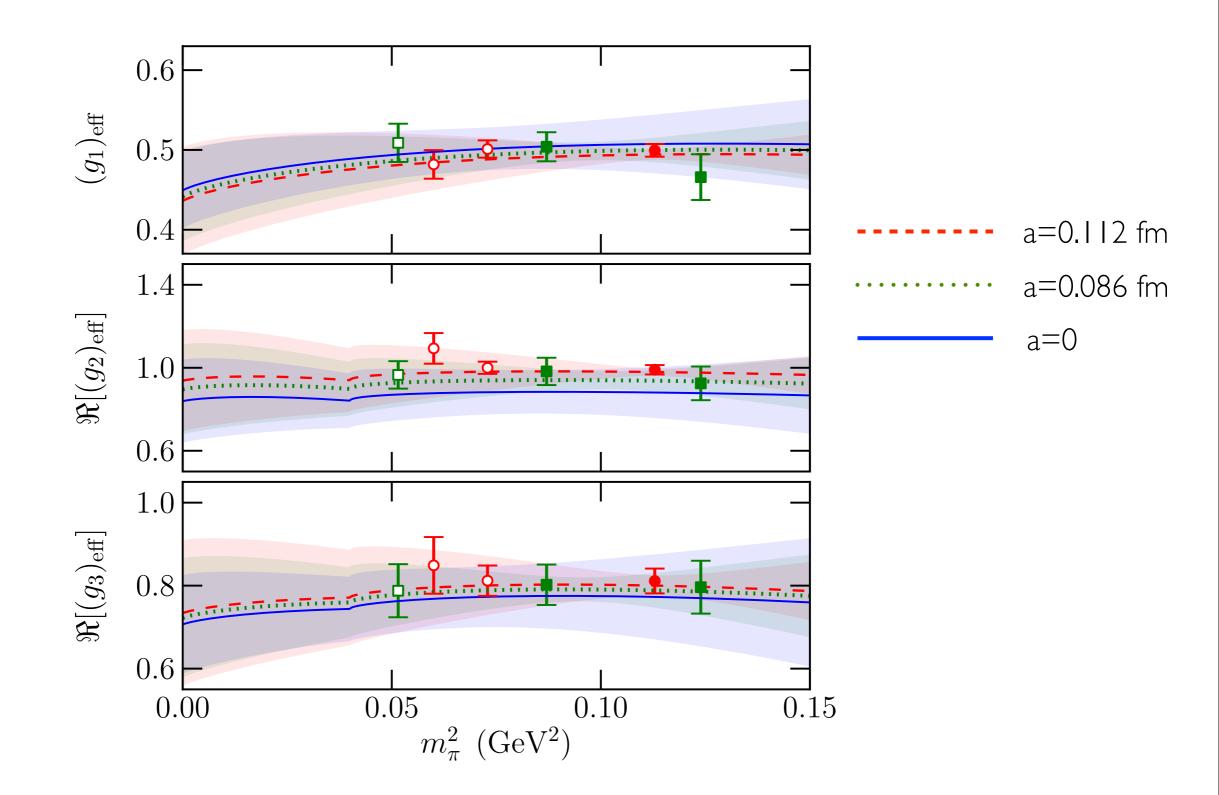
• Fitted gaps: $\delta_i \sim 0.7$ —1.0 GeV

Chiral and continuum extrapolation

 Use NLO partially quenched SU(4|2) HHχPT at finite volume and include polynomial discretisation effects
 _{Partial quenching}

$$\begin{split} (g_1)_{\mathrm{eff}}(a,m,n_{\mathrm{HYP}}) = & \underbrace{g_1} \left[1 - \frac{2}{f^2} \, \mathcal{I}(m_{\pi}^{(\mathrm{vs})}) + \frac{g_1^2}{f^2} \Big\{ 4 \, \mathcal{H}(m_{\pi}^{(\mathrm{vs})},\,0) - 4 \, \delta_{VS}^2 \mathcal{H}_{\eta'}(m_{\pi}^{(\mathrm{vv})},\,0) \Big\} \\ & + c_1^{(\mathrm{vv})} \, [m_{\pi}^{(\mathrm{vv})}]^2 + c_1^{(\mathrm{vs})} \, [m_{\pi}^{(\mathrm{vs})}]^2 + d_{1,\,n_{\mathrm{HYP}}} \, a^2 \right]. \\ (g_2)_{\mathrm{eff}}(a,m,n_{\mathrm{HYP}}) = & \underbrace{g_2} \left[1 - \frac{2}{f^2} \, \mathcal{I}(m_{\pi}^{(\mathrm{vs})}) + \frac{g_2^2}{f^2} \Big\{ \frac{3}{2} \, \mathcal{H}(m_{\pi}^{(\mathrm{vs})},\,0) - \delta_{VS}^2 \mathcal{H}_{\eta'}(m_{\pi}^{(\mathrm{vv})},\,0) \Big\} \right. \\ & + \underbrace{g_3^2}_{f^2} \Big\{ 2 \, \mathcal{H}(m_{\pi}^{(\mathrm{vs})},\,-\Delta) - \mathcal{H}(m_{\pi}^{(\mathrm{vv})},\,-\Delta) - 2 \, \mathcal{K}(m_{\pi}^{(\mathrm{vs})},\,-\Delta,\,0) \Big\} \\ & + c_2^{(\mathrm{vv})} \, [m_{\pi}^{(\mathrm{vv})}]^2 + c_2^{(\mathrm{vs})} \, [m_{\pi}^{(\mathrm{vs})}]^2 + d_{2,\,n_{\mathrm{HVP}}} \, a^2 \Big], \\ (g_3)_{\mathrm{eff}}(a,m,n_{\mathrm{HYP}}) = & \underbrace{g_3} \left[1 - \frac{2}{f^2} \, \mathcal{I}(m_{\pi}^{(\mathrm{vs})}) + \frac{g_3^2}{f^2} \Big\{ \mathcal{H}(m_{\pi}^{(\mathrm{vs})},\,-\Delta) - \frac{1}{2} \mathcal{H}(m_{\pi}^{(\mathrm{vv})},\,-\Delta) \right. \\ & + \frac{3}{2} \, \mathcal{H}(m_{\pi}^{(\mathrm{vv})},\,\Delta) + 3 \, \mathcal{H}(m_{\pi}^{(\mathrm{vs})},\,\Delta) - \mathcal{K}(m_{\pi}^{(\mathrm{vs})},\,\Delta,\,0) \Big\} \\ & + \frac{g_2^2}{f^2} \Big\{ - \mathcal{H}(m_{\pi}^{(\mathrm{vs})},\,\Delta) - \mathcal{H}(m_{\pi}^{(\mathrm{vv})},\,\Delta) + \mathcal{H}(m_{\pi}^{(\mathrm{vs})},\,0) - \delta_{VS}^2 \mathcal{H}_{\eta'}(m_{\pi}^{(\mathrm{vv})},\,0) \Big\} \\ & + c_3^{(\mathrm{vv})} \, [m_{\pi}^{(\mathrm{vv})}]^2 + c_3^{(\mathrm{vs})} \, [m_{\pi}^{(\mathrm{vs})}]^2 + d_{3,\,n_{\mathrm{HYP}}} \, a^2 \Big]. \end{split}$$

Chiral and continuum extrapolation



Axial couplings

Final extracted values

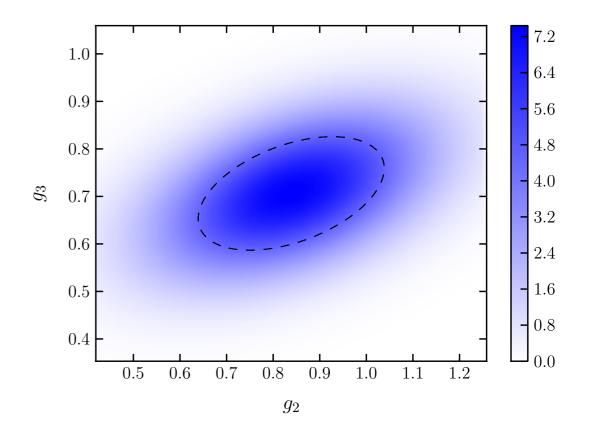
$$g_1 = 0.449 \pm 0.047_{\text{stat}} \pm 0.019_{\text{syst}}$$

 $g_2 = 0.84 \pm 0.20_{\text{stat}} \pm 0.04_{\text{syst}}$
 $g_3 = 0.71 \pm 0.12_{\text{stat}} \pm 0.04_{\text{syst}}$

Sources of systematic errors

Source	g_1	g_2	g_3
NNLO terms in fits of m_{π} - and a -dependence	3.6%	2.8%	3.7%
Higher excited states in fits to $R_i(t)$	1.7%	2.8%	4.9%
Unphysical value of $m_s^{\text{(sea)}}$	1.5%	1.5%	1.5%
Total	4.2%	4.3%	6.3%

 Dominated by statistical errors



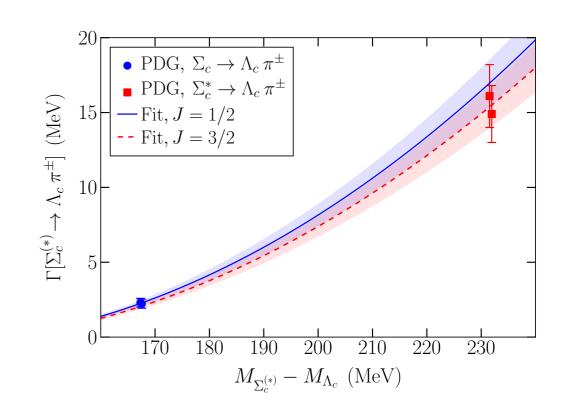
Decay widths

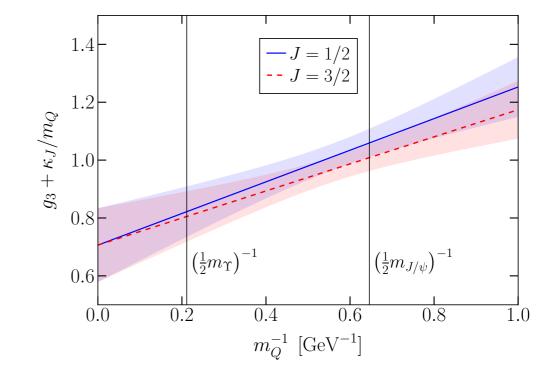
 Strong decays allowed for heavy baryons

$$\Gamma[S \to T \,\pi] = c_{\rm f}^2 \, \frac{1}{6\pi f_{\pi}^2} \left(g_3 + \frac{\kappa_J}{m_Q} \right)^2 \frac{M_T}{M_S} \, |\mathbf{p}_{\pi}|^3$$

$$c_{\rm f} = \begin{cases} 1 & \text{for } \Sigma_Q^{(*)} \to \Lambda_Q \, \pi^{\pm}, \\ 1 & \text{for } \Sigma_Q^{(*)} \to \Lambda_Q \, \pi^0, \\ 1/\sqrt{2} & \text{for } \Xi_Q^{\prime(*)} \to \Xi_Q \, \pi^{\pm}, \\ 1/2 & \text{for } \Xi_Q^{\prime(*)} \to \Xi_Q \, \pi^0. \end{cases}$$

- I/m_Q corrections important: determine from charm sector
- Effective coupling vs I/m_Q
- Valid only at LO in $HH\chi PT$





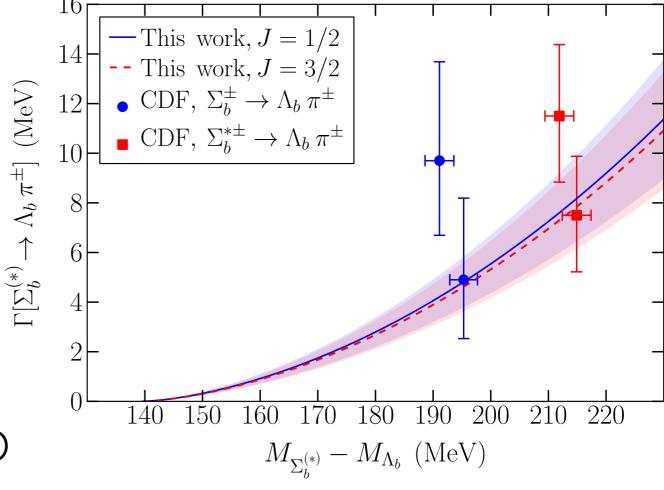
Decay widths

Calculate (and predict) bottom and charm baryon

decay widths

Hadron	This work	Experiment
Σ_b^+	4.2(1.0)	$9.7^{+3.8+1.2}_{-2.8-1.1}$ [13]
Σ_b^-	4.8(1.1)	$4.9^{+3.1}_{-2.1} \pm 1.1 [13]$
Σ_b^{*+}	7.3(1.6)	$11.5^{+2.7+1.0}_{-2.2-1.5}$ [13]
Σ_b^{*-}	7.8(1.8)	$7.5^{+2.2+0.9}_{-1.8-1.4}$ [13]
Ξ_b'	1.1 (CL=90%)	
Ξ_b^*	2.8 (CL=90%)	•••
Ξ_c^{*+}	2.44(26)	< 3.1 (CL=90%) [70]
Ξ_c^{*0}	2.78(29)	< 5.5 (CL=90%) [71]

• Uses determinations of Ξ_b' , Ξ_b^* masses from LQCD [Lewis & Woloshyn 09]



Heavy hadron axial couplings

 First complete calculation of axial couplings controlling all systematics

$$g_1 = 0.449 \pm 0.047_{\text{stat}} \pm 0.019_{\text{syst}}$$

 $g_2 = 0.84 \pm 0.20_{\text{stat}} \pm 0.04_{\text{syst}}$
 $g_3 = 0.71 \pm 0.12_{\text{stat}} \pm 0.04_{\text{syst}}$

- Considerably smaller than quark model estimates
- Pleasant consequences for convergence of $HH\chi PT$
- Allows pre- (and post-) dictions of strong decay widths (also $\Gamma[\Xi_c^* \to \Xi_c \gamma]$)