Ultra high energy cosmic ray and LHCf data

Nobuyuki Sakurai

Outline

- Ultra high energy cosmic ray (UHECR)
- Observation of UHECRs
- Hadronic interaction and UHECR observation
- Collider experiment dedicated UHECR study
 ~ LHCf ~
- Summary

Ultra high energy cosmic ray (UHECR)

Ultra High Energy Cosmic Ray

CR source candidates of UHECRs

- Top-down model
 - Decay or annihilation of super heavy particle
 - Z burst
 - Topological defect
- Bottom up model
 - Neutron star
 - Active galactic nuclei
 - Gamma ray burst
 - Galactic cluster
 - Radio galaxy

Greisen, Zatsepin and Kuzmin (GZK) Cutoff

Interaction mechanism between CMB and UHE proton.

✓ Mean free path ~ 50 Mpc

Flux suppression above 5x10¹⁹ eV is expected.

- ✓ AGASA \rightarrow beyond
- ✓ HiRes, Auger → suppression

Large systematic error
 ✓ AGASA 18%, HiRes 17%, Auger 22%

Models of spectrum structure

Suppression = GZK cutoff

"ankle"

- = "dip" by pair-creation $p + \gamma_{CMBR} \rightarrow p + e^+ + e^-$
- Transition of the primary composition before "ankle"

- Suppression = Accerelation limit
- "ankle" = Different CR source
- "ankle" is not "dip"

Key is "composition measurement"

Observation of UHECRs

2013/11/14 Made by A. Oshima (Chubu U.)

Surface detector array (SD)

Detect secondary particles by counter array on the ground.

Strong point

- ≻100% duty
- ➢ Relatively cheap
- ➤Lateral distributions of particle density and timing.

Weak point

➢Energy reconstruction depends upon the hadron interaction largely.

Fluorescence Detector (FD)

Detect air fluorescence light by telescope.

Strong point

- Longitudinal development of air shower = Primary composition
- Energy can be measured calorimetrically.

Weak point

- Duty is less than 10%
- Depends on the atmospheric conditions.

Telescope Array experiment(TA)

- ➤ Western desert of Utah, USA
- Detection area ~ 700 km²
- Largest detector in northern hemisphere
- ➢ Opereation : 2008 Mar. ∼

Fluorescence detector(FD) Station (BRM&LR)

Energy spectrum of UHECRs 5.7x10^19eV $J(E) \times E^{3}/10^{24}$ [eV² m⁻² s⁻¹ sr⁻¹ 10 **No suppression** 5.0x10^18eV :68.1 L T_{¢¢¢¤¤} ${}^{\Delta_{\Delta}}_{\Delta_{\Delta,\Delta^{2}}}$ **Observed : 26** AGASA Auger Significance **HiRes-I** = 5.7σ **HiRes-II** TA SD **10**[°] 17 20 20.5 17.5 18 18.5 19 19.5 log₁₀(E/eV)

Xmax : Primary composition

Primary composition of UHECRs

2013/11/14

Correlation with AGN

- 472 AGN from 2006 Veron catalog with z<0.018
- E>57EeV, zenith angle<45deg, N=42(5yr)
- Separation angle < 3.1deg

Correlation with AGN

• 17 events correlate out of 42 \rightarrow p=0.014

Summary of TA latest results

- Results of 5 years TA operation was presented.
- Energy spectrum
 - Significance of the suppression is 5.7σ above 5.4x10^19eV.
- Composition
 - Consistent with proton above 1.6x10^18eV.
- Arrival direction
 - Some hints?

Hadronic interaction & UHECR observation

Summary of composition studies

- Around 10¹⁸ eV, composition is changing. (Stereo Fly's Eye, HiRes/MIA)
- ➢ Above 10^{18.5} eV,
 - Proton (TA & HiRes)
 - Light nuclei (Auger)

Known anomalies of air shower observables(1)

• # of muons on the ground is too much.

Known anomalies of air shower observables(2)

• E.M component of secondary particle on the ground is also too mach.

Auger Method

- Find simulations which match measured FD profile, for each event
- Compare the ground signals between the simulations and data
- Rescale muon content (R_µ) so that simulated ground showers best-match observed ones; also allow for energy calibration rescaling (R_F).

TA

Collider experiment dedicated UHECR study (LHCf)

Air Shower study using collder

Forward Physics with the LHCf experiment

25

Where to be measured at colliders

^{2013/11}Most of the energy flows into forward

The LHC forward experiment

- All charged particles are swept by dipole magnet

LHCf Detectors

- ✓ Imaging sampling shower calorimeters
- ✓ Two calorimeter towers in each of Arm1 and Arm2
- ✓ Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers

Comparison of π^0 data at $\sqrt{s} = 7$ TeV w/ hadronic interaction models

" \sqrt{s} = 7TeV"→ CR energy of 2.6x10^16eV

- EPOS1.99 show the best agreement with data in the models.
- **DPMJET** and **PYTHIA** have harder spectra than data ("popcorn model")
- **QGSJET** has softer spectrum than data (only one quark exchange is allowed)

Forward Physics with the LHCf experiment292013/11/14

Comparison of neutron data at $\sqrt{s} = 7$ TeV w/ hadronic interaction models

Courtesy of K. Kawade (Nagoya U, STE lab.)

No rapidity selection No efficiency correction Only statistical error

Forward Physics with the LHCf experiment 30 2013/11/14

Example of model modification(2)

- Toy model study of nucleon contribution
 - High rapidity & high energy pions are changed to nucleon (Blue case).
 - All nucleons are changed to pions (Red case).

More realistic modification studies are going on now.

Summary

- Latest results of TA shows
 - Spectrum shape & Xmax study are consistent with proton primary case.
 - There is some hint of source in arrival direction distribution.
- Hadronic interaction study is very important for interpretations of UHECR observation.
 - Uncertainty of composition study.
 - Anomalies of air shower observables.
- Hadrons in very forward region affects the air shower development.
 - LHCf data will improve the UHECR observation.