The "Giga" Era of Instrumentation at the Discovery Frontier

Gary S. Varner University of Hawai'i KMI Seminar, Nov. 9, 2012

The big Questions

- 1. Are there undiscovered principles of nature?
- 2. How can we solve the mystery of dark energy?
- 3. Are there extra dimensions of space?
- 4. Do all the forces become one?
- 5. Why are there so many kinds of particles?
- 6. What is dark matter? Can we make it in the lab?
- 7. What are neutrinos telling us?
- 8. How did the universe come to be?
- 9. What happened to the antimatter?

Overview

- Further advances at the Discovery Frontier
 - Depends upon developing new instruments and techniques
 - Exploit commodity resources
- The "easy" experiments are being completed
 - Can't necessarily scale up (\$, T>N*t_{gradstudent})
 - Innovation fuels new opportunities
- What I hope to convey:
 - 1. What the "Giga" Era means
 - 2. Key elements
 - 3. An example where this has been fundamentally enabling
 - 4. The Belle II (Time Of Propagation) Particle Detector

Detector Instrumentation Evolution

A "Giga" Overview (Modern Readout)

 Gigasample/s
"digital oscilloscope on a chip"

3. Inexpensive Giga-bit/s fiber link interconnect; Giga-bit ethernet

Technology advances \rightarrow high rate, high-precision experiments

Focus on the first of these

- Defines limit of the physical measurement
- What Instrumentation Physicists contribute

• Pipelined storage = array of T/H elements, with output buffering

Switched Capacitor Array Sampling

300MHz RF Sine [50mV amplitude]

Basic Functional components

The Giga Package

Fundamental enabling technology (all current Hawaii activities)

To be explicit, a demanding Application

Antarctic Impulsive Transient Antenna (ANITA-I)

Need full waveforms

20

ANITA concept

Large Analog Bandwidth Recorder and Digitizer with Ordered Readout [LABRADOR]

LABRADOR performance

- 10 real bits (1.3V/1.3mV noise)
- Excellent linearity, noise
- Sampling rates up to 4 GSa/s with voltage overdrive

PCI bus: 64bits, 66MHz ~ 0.5 GigaByte/s (upgrading for 3rd flight)

Permits thermal noise level operation

Timing vs Angle (with Impulse Calibration Radio Signal)

Pulse Phase interferometry A. Romero-Wolf (Hawaii)

Ultrawide-band Interferometry

- -Interferometric technique applied by radio astronomers.
- -They use single narrow band frequency.
- -More interested in source imaging rather than point source direction reconstruction.

Produce Ultrawide-band Interferometric Images with ANITA

~30ps (16ps) resolution between channels

Mapping Waveforms to Interferometric Images

Mapping Time Delay Correlations

Interferometric Image

After full calibration – 100's km

The "no free lunch" Theorem

• Excellent results obtained

 Made the ANITA project possible & highly successful
Similar architectures being studied for new and upgraded experiments

3. Minimize costs for large systems

- Not a magic solution
 - Significant constraints
 - Technology in its infancy will continue to improve
- Limits and future directions

The technology, in a bit more detail

Constraint 0: An Intrinsic Limitation

No power (performance savings) for continuous digitization

Won't displace Flash ADCs

 → For most "triggered" 'event' applications, not a serious drawback

Bandwidth Limitations (LAB1 example)

 $f_{3dB} = 1/2\pi ZC$

Would like smallest possible Cstore

- For 1.2GHz, C <~ 2pF (NB input protection diode ~10pF)
- Minimize C, (C_{drain} not negligible x260)

An Example Bandwidth Evaluation

9 channels of 256 samples

To do better, reduce input and storage C

Constraint 2: kTC Noise

Want small storage C, but...

Similar Constraint 2b: Leakage Current

Increase C or reduce conversion time << 1mV

Sample channel-channel variation ~ fA leakage typically

Constraint 3: Digitization

12-bit ADC

- No missing codes
- Linearity as good as can make ramp
- Can bracket range of y = 1606.8x + 105.26Labrador ADC Performance $R^2 = 0.9999$ interest 3500 3000 Vin 2500 Run count Vramp **Dutput Code** 2000 during ramp Vemp Average Linear (Average) 1500 Register Vin Vemp 1000 D(0:11) 500 0 12 1.5 0 0.5 2 1 2.5 Vramp Voltage (v) Wilkinson ADC Gray Code Counter Ramp Generator Clock
 - Excellent linearity
 - Basically as good as can make current source/comparator
 - Comparator ~0.4 2.1V; 133MHz GCC max (~31us)

Constraint 4: Sample Aperture Variance

- Inverter chain has transistor variations
 - $\rightarrow \Delta t_i$ between samples differ
 - → "Fixed pattern aperture jitter"
- "Differential temporal nonlinearity" $TD_i = \Delta t_i - \Delta t_{nominal}$
- "Integral temporal nonlinearity" $TI_i = \Sigma \Delta t_i - i \cdot \Delta t_{nominal}$
- "Random aperture jitter" = variation of Δt_i between measurements

Non-uniform sampling timebase

dT Spread

Average aperture calibration

- Fixed aperature offsets are constant over time, can be measured and corrected
- Several methods are commonly used (sine fit [left], zero-crossing)
- Most use sine wave with random phase and correct for TD_i on a statistical basis

Sine Curve Fit Method

$$\chi^{2} = \sum_{j=0}^{500} \sum_{i=0}^{1024} (y_{ji} - (a_{j} \sin(i\frac{2\pi}{f_{j}} + \alpha_{j} + \beta_{i}) + o_{j}))^{2} \to \min$$

 y_{ji} : i-th sample of measurement j $a_j f_j \alpha_j o_j$: sine wave parameters β_i : phase error \rightarrow fixed jitter

"Iterative global fit":

- Determine rough sine wave parameters for each measurement by fit
- Determine β_i using all measurements where sample "i" is near zero crossing
- Make several iterations

Option 1: Even Faster Sampling

Possible with delay is implemented on PCB
Constraint 5: Cross-talk

Coupling between wire-bonds, Vref

Advantage 1: Compact, low-power

- Comparable performance to best CFD + HPTDC
- Time difference measurement of recorded pulses
- Using full samples significantly reduces the impact of noise

Advantage 2: Scaling to Large Systems

• ASIC costing well understood, very competitive!

NIM A591 (2008) 534-345.

B-factory Detectors – a huge success!

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decays (e.g., $B \rightarrow \tau v$, $D \tau v$)
- b \rightarrow s transitions: probe for new sources of CPV and constraints from the b \rightarrow s γ branching fraction
- Forward-backward asymmetry (A_{FB}) in b \rightarrow sll has become a powerfull tool to search for physics beyond SM. g
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

Are we done yet ?

Теория расширяющейся Бселенкой, предполагающая свёрхплотное начальное состояние вещества, по-видимому, исключает возможность макроскопического разделения вещества и антивещества; поэтому следует

"Super" B Factory strategy

B factories \rightarrow is SM with CKM right?

Super B factories \rightarrow How is the SM wrong?

- → Need much more data (two orders!) because the SM worked so well until now → Super B factory
- However: it will be a different world in four years, there will be serious competition from LHCb and BESIII → PANDA

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

Update of the physics reach with 50 ab⁻¹ (75 ab⁻¹): Physics at Super B Factory (Belle II authors + guests) <u>hep-ex</u> > arXiv:1002.5012 SuperB Progress Reports: Physics (SuperB authors + guests) <u>hep-ex</u> > arXiv:1008.1541

SuperKEKB luminosity profile

Requirements for the Belle II detector

Critical issues at L= 8 x 10³⁵/cm²/sec

Higher background (×10-20)

 radiation damage and occupancy
 fake hits and pile-up noise in the EM Calorimeter

Higher event rate (×10)

- higher rate trigger, DAQ and computing

Special features required

- low $p \mu$ identification $\leftarrow \sigma \mu \mu$ recon. eff.

- hermeticity $\leftarrow v$ "reconstruction"

Result: significant upgrade

Upgraded Belle detector

- PID (π/K) detectors
 - Inside current calorimeter
 - Use less material and allow more tracking volume
 → Available geometry defines form factor

Original TOP counter concept

Linear array PMT (~5mm) Time resolution σ ~40ps

46

Slightly Enhanged "image plane"

• Must fit in a very crowded envelope

Performance Requirements (TOP)

• Single photon timing for MCP-PMTs

Readout Option Chosen

- Why Waveform Sampling?
- Lower power, high density, cost effective
 - Handle charge-sharing/cross-talk

Single PMT (beam test data – 90ns windows)

Leverage experience from radio-neutrino work (<=30 ps on large, solar-powered payload)

- Why Not use existing ASIC?
- No suitable existing ASICs (reason why current ASICs developed)
 - BLAB/IRS are only GSa/s SCA ASICs with 5μ s depth (L1 trig)
 - Triggerless operation? \rightarrow higher power, 330x data rate

Readout ASIC Specifications

32768	samples/chan (>5.2µs trig latency)
8	channels/BLAB3 ASIC
8	Trigger channels
~9	bits resolution (12[10]-bits logging)
64	samples convert window (~16ns)
4	GSa/s
1	word (RAM) chan, sample readout
1+n*0.02	μ s to read n samples (of same 64)
30	kHz sustained readout (multibuffer)

• Time alignment critical

- Synchronize sampling to accelerator RF clock (Belle TOF)

 $- >\! 5\mu s$ buffer depth a must for trigger, since single photon rates high

ASIC Single Channel

• Sampling: 128 (2x 64) separate transfer lanes

Recording in one set 64, transferring other ("ping-pong")

- Concurrent Writing/Reading
 Only 128 timing constants
 Storage: 64 x 512 (512 = 8 * 64)
 - Wilkinson (64x1): was (32x2)
 - 64 conv/channel

TOP Readout Architecture

Event Timing

- At Super-KEKB the timing of signals should be fixed relative to trigger (system clock)
 - But it is random with respect to 21 MHz derived (Super-KEKB RF clock).
 - t_{hit} from waveform must be combined with $t_{\mbox{\scriptsize FTSW}}$ from CAMAC TDC to align events.

System Synchronization

Crucial to obtain required performance

127 MHz clock Serial data (trigger & synchronization)

- 127 MHz clock is divided by 6 on front-end module to ~21 MHz
 - This corresponds to sampling rate of ~2.7 GSa/s
 - FPGA uses serial data stream to determine clock phase

Clock Distribution Performance

• Test results performed as part of the cosmic ray test stand integration at Nagoya Univ in August 2011:

Measured phase and jitter of 21.2 MHz clock from two modules (on oscilloscope)

2011-2012 Fermilab Beam Test

Hit distribution for normal incidence

Signal processing

Clean hit (center of Anode pad)

Depending upon amplitude, "cross talk" hit (red) == remove by filtering

Can (in principle) decouple PMT, wiring & readout xtalk

Photon Counting Studies

Example event, waveforms from all channels of one MCP-PMT

 $\begin{array}{c} \mbox{Red}-\mbox{waveform with a} \\ \mbox{hit to be counted in total} \\ N_{\gamma} \\ \mbox{Blue}-\mbox{waveform with no} \\ \mbox{hit} \end{array}$

Testbed for:

- Ensuring cross-talk or charge sharing events are not double counted.
- Counting double hits.
 - Avoiding any artificial digital glitches that might otherwise be counted.

→ Single p.e. laser studies allow a more controlled environment to check cross-talk from various sources.

Temperature Dependence

- Timing observed to drift over event number
 - Contributions:
 - Baseline shifts in waveforms
 - Change of time-base with temperature
 - Timing over limited event region demonstrates improvement in timing resolution by removing these effects

Cosmic Ray Telescope (Fuji Hall, KEK)

Under construction now: testbed for "final" ASIC, pre-production electronics

• COPPER (COmmon Pipelined Platform for Electronics Readout)

• Used in Belle, J-PARC experiments

•FINESSE (Front-end Instrumentation Entity for Subdetector Specific Electronics)

COPPEI

Fast-feature extraction -- beam & CRT

- 500 MHz processor per core
- 32x waveform channels per core
- 60k Waveforms/s benchmarked

DSP_FIN

128 MB SDRAM

4x Fiber Optic Connections Dual Core DSP

128 MB SDRAM

Data Reduction Exercises

Event Generator

Event Generator Design

"full speed" testing

Embedded • 30kHz L1 Trigger: CPU Adx Request Or 2.5% occupancy hardware controller (100ns window) Copper CPU • <100 samples>/hit Aurora IP Compact UART over USB UART IP ASIC Data 115200 Baud Flash • 0.3Gbps (~10% link Memory Data Set Response capacity) Aurora protocol over Fiber • ~100 samples New Addition for Event Generator FTSW reduced to T,Q per p.e. SCROD Firmware Fiber Readout module • Few kBytes/evt Chipscop Lane 1 Reques Interface Data Fetcher ASIC Digitizer ASIC Module (max) Trigger SIC digitizing and DAQ_Busy readout.vhd) • 13 Mbytes/s ASIC Data Col x12 bits expected output Done Digitiz Row Enable 3:01 (4 ro/ ** Detector PMTs/ASICs Front End Board Stack

Belle II TOP Readout Status

- **IRS3B fabricated** ("final ASIC, if no changes needed")
- Next generation control firmware in development v.2 fDIRC CRT; v.3 IRS3B, backend processing
- Redesign, fab of next generation board stack
 - Improved HV, cooling
 - Feedback control, in-situ calibration
 - Amplifier options being studied (N.B.: 5x10⁵ gain)
- Experience with confirming prototypes by end of 2012, "pre-production" early 2013
- Production in late 2013-2014
- Installation, commissioning and operations: 2015-2016

Summary

The "Giga" Era of Instrumenation is here

- Enables whole new ways of instrumenting detectors
- Commodity components and processes open whole new opportunities

66

Back-up slides

Timing Big Systems I

timing channel

Pedestal and Pedestal Stability

Pedestal Distribution

AC coupled input

125MHz sine wave

Real MCP-PMT Signals (with BLAB2)

Simulated Performance vs. SNR

300MHz ABW, 5.9GSa/s

